Convergenza saggia

Convergenza saggia (Redirected from Beer's theorem) Jump to navigation Jump to search Wijsman convergence is a variation of Hausdorff convergence suitable for work with unbounded sets. Intuitivamente, Wijsman convergence is to convergence in the Hausdorff metric as pointwise convergence is to uniform convergence.

Contenuti 1 Storia 2 Definizione 3 Proprietà 4 Guarda anche 5 Riferimenti 6 External links History The convergence was defined by Robert Wijsman.[1] The same definition was used earlier by Zdeněk Frolík.[2] Yet earlier, Hausdorff in his book Grundzüge der Mengenlehre defined so called closed limits; for proper metric spaces it is the same as Wijsman convergence.

Definition Let (X, d) be a metric space and let Cl(X) denote the collection of all d-closed subsets of X. For a point x ∈ X and a set A ∈ Cl(X), impostare {stile di visualizzazione d(X,UN)=inf_{ain A}d(X,un).} Una sequenza (or net) of sets Ai ∈ Cl(X) is said to be Wijsman convergent to A ∈ Cl(X) Se, for each x ∈ X, {stile di visualizzazione d(X,UN_{io})to d(X,UN).} Wijsman convergence induces a topology on Cl(X), known as the Wijsman topology.

Properties The Wijsman topology depends very strongly on the metric d. Even if two metrics are uniformly equivalent, they may generate different Wijsman topologies. Beer's theorem: Se (X, d) is a complete, separable metric space, then Cl(X) with the Wijsman topology is a Polish space, cioè. it is separable and metrizable with a complete metric. cl(X) with the Wijsman topology is always a Tychonoff space. Inoltre, one has the Levi-Lechicki theorem: (X, d) is separable if and only if Cl(X) is either metrizable, first-countable or second-countable. If the pointwise convergence of Wijsman convergence is replaced by uniform convergence (uniformly in x), then one obtains Hausdorff convergence, where the Hausdorff metric is given by {stile di visualizzazione d_{matematica {H} }(UN,B)= sup _{xin X}{grande |}d(X,UN)-d(X,B){grande |}.} The Hausdorff and Wijsman topologies on Cl(X) coincide if and only if (X, d) is a totally bounded space.

See also Hausdorff distance Kuratowski convergence Vietoris topology Hemicontinuity References Notes ^ Wijsman, Robert A. (1966). "Convergence of sequences of convex sets, cones and functions. II". Trans. Amer. Matematica. soc. Società matematica americana. 123 (1): 32–45. doi:10.2307/1994611. JSTOR 1994611. MR0196599 ^ Z. Frolík, Concerning topological convergence of sets, Czechoskovak Math. J. 10 (1960), 168–180 Bibliography Beer, Geraldo (1993). Topologies on closed and closed convex sets. Mathematics and its Applications 268. Dordrecht: Kluwer Academic Publishers Group. pp. xii+340. ISBN 0-7923-2531-1. MR1269778 Beer, Geraldo (1994). "Convergenza saggia: un sondaggio". Set-Valued Anal. 2 (1–2): 77–94. doi:10.1007/BF01027094. MR1285822 External links Som Naimpally (2001) [1994], "Convergenza saggia", Enciclopedia della matematica, Categorie di stampa EMS: Metric geometry

Se vuoi conoscere altri articoli simili a Convergenza saggia puoi visitare la categoria Metric geometry.

lascia un commento

L'indirizzo email non verrà pubblicato.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni