Sage convergence

Sage convergence (Redirected from Beer's theorem) Jump to navigation Jump to search Wijsman convergence is a variation of Hausdorff convergence suitable for work with unbounded sets. Intuitivement, Wijsman convergence is to convergence in the Hausdorff metric as pointwise convergence is to uniform convergence.
Contenu 1 Histoire 2 Définition 3 Propriétés 4 Voir également 5 Références 6 External links History The convergence was defined by Robert Wijsman.[1] The same definition was used earlier by Zdeněk Frolík.[2] Yet earlier, Hausdorff in his book Grundzüge der Mengenlehre defined so called closed limits; for proper metric spaces it is the same as Wijsman convergence.
Definition Let (X, ré) be a metric space and let Cl(X) denote the collection of all d-closed subsets of X. For a point x ∈ X and a set A ∈ Cl(X), Positionner {displaystyle d(X,UN)=inf _{ain A}ré(X,un).} Une séquence (or net) of sets Ai ∈ Cl(X) is said to be Wijsman convergent to A ∈ Cl(X) si, for each x ∈ X, {displaystyle d(X,UN_{je})to d(X,UN).} Wijsman convergence induces a topology on Cl(X), known as the Wijsman topology.
Properties The Wijsman topology depends very strongly on the metric d. Even if two metrics are uniformly equivalent, they may generate different Wijsman topologies. Beer's theorem: si (X, ré) is a complete, separable metric space, then Cl(X) with the Wijsman topology is a Polish space, c'est à dire. it is separable and metrizable with a complete metric. CL(X) with the Wijsman topology is always a Tychonoff space. En outre, one has the Levi-Lechicki theorem: (X, ré) is separable if and only if Cl(X) is either metrizable, first-countable or second-countable. If the pointwise convergence of Wijsman convergence is replaced by uniform convergence (uniformly in x), then one obtains Hausdorff convergence, where the Hausdorff metric is given by {displaystyle d_{mathrm {H} }(UN,B)=sup _{xin X}{gros |}ré(X,UN)-ré(X,B){gros |}.} The Hausdorff and Wijsman topologies on Cl(X) coincide if and only if (X, ré) is a totally bounded space.
See also Hausdorff distance Kuratowski convergence Vietoris topology Hemicontinuity References Notes ^ Wijsman, Robert A.. (1966). "Convergence of sequences of convex sets, cones and functions. II". Trans. Amer. Math. Soc. Société mathématique américaine. 123 (1): 32–45. est ce que je:10.2307/1994611. JSTOR 1994611. MR0196599 ^ Z. Frolík, Concerning topological convergence of sets, Czechoskovak Math. J. 10 (1960), 168–180 Bibliography Beer, Gerald (1993). Topologies on closed and closed convex sets. Mathematics and its Applications 268. Dordrecht: Kluwer Academic Publishers Group. pp. xii+340. ISBN 0-7923-2531-1. MR1269778 Beer, Gerald (1994). "Sage convergence: un sondage". Set-Valued Anal. 2 (1–2): 77–94. est ce que je:10.1007/BF01027094. MR1285822 External links Som Naimpally (2001) [1994], "Sage convergence", Encyclopédie des mathématiques, Catégories de presse EMS: Metric geometry
Si vous voulez connaître d'autres articles similaires à Sage convergence vous pouvez visiter la catégorie Metric geometry.
Laisser un commentaire