Wijsman convergence

Wijsman convergence (Redirected from Beer's theorem) Jump to navigation Jump to search Wijsman convergence is a variation of Hausdorff convergence suitable for work with unbounded sets. Intuitiv, Wijsman convergence is to convergence in the Hausdorff metric as pointwise convergence is to uniform convergence.

Inhalt 1 Geschichte 2 Definition 3 Eigenschaften 4 Siehe auch 5 Verweise 6 External links History The convergence was defined by Robert Wijsman.[1] The same definition was used earlier by Zdeněk Frolík.[2] Yet earlier, Hausdorff in his book Grundzüge der Mengenlehre defined so called closed limits; for proper metric spaces it is the same as Wijsman convergence.

Definition Let (X, d) be a metric space and let Cl(X) denote the collection of all d-closed subsets of X. For a point x ∈ X and a set A ∈ Cl(X), einstellen {Anzeigestil d(x,EIN)=inf _{ain A}d(x,a).} Eine Sequenz (or net) of sets Ai ∈ Cl(X) is said to be Wijsman convergent to A ∈ Cl(X) wenn, for each x ∈ X, {Anzeigestil d(x,EIN_{ich})to d(x,EIN).} Wijsman convergence induces a topology on Cl(X), known as the Wijsman topology.

Properties The Wijsman topology depends very strongly on the metric d. Even if two metrics are uniformly equivalent, they may generate different Wijsman topologies. Beer's theorem: wenn (X, d) is a complete, separable metric space, then Cl(X) with the Wijsman topology is a Polish space, d.h. it is separable and metrizable with a complete metric. Kl(X) with the Wijsman topology is always a Tychonoff space. Darüber hinaus, one has the Levi-Lechicki theorem: (X, d) is separable if and only if Cl(X) is either metrizable, first-countable or second-countable. If the pointwise convergence of Wijsman convergence is replaced by uniform convergence (uniformly in x), then one obtains Hausdorff convergence, where the Hausdorff metric is given by {Anzeigestil d_{Mathrm {H} }(EIN,B)=sup _{xin X}{groß |}d(x,EIN)-d(x,B){groß |}.} The Hausdorff and Wijsman topologies on Cl(X) coincide if and only if (X, d) is a totally bounded space.

See also Hausdorff distance Kuratowski convergence Vietoris topology Hemicontinuity References Notes ^ Wijsman, Robert A. (1966). "Convergence of sequences of convex sets, cones and functions. II". Trans. Amer. Mathematik. Soc. Amerikanische Mathematische Gesellschaft. 123 (1): 32–45. doi:10.2307/1994611. JSTOR 1994611. MR0196599 ^ Z. Frolík, Concerning topological convergence of sets, Czechoskovak Math. J. 10 (1960), 168–180 Bibliography Beer, Gerhard (1993). Topologies on closed and closed convex sets. Mathematics and its Applications 268. Dordrecht: Kluwer Academic Publishers Group. pp. xii+340. ISBN 0-7923-2531-1. MR1269778 Beer, Gerhard (1994). "Wijsman convergence: eine Umfrage". Set-Valued Anal. 2 (1–2): 77–94. doi:10.1007/BF01027094. MR1285822 External links Som Naimpally (2001) [1994], "Wijsman convergence", Enzyklopädie der Mathematik, Kategorien der EMS-Presse: Metric geometry

Wenn Sie andere ähnliche Artikel wissen möchten Wijsman convergence Sie können die Kategorie besuchen Metric geometry.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen