Uniformization theorem

Uniformization theorem In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.
Since every Riemann surface has a universal cover which is a simply connected Riemann surface, the uniformization theorem leads to a classification of Riemann surfaces into three types: those that have the Riemann sphere as universal cover ("elliptic"), those with the plane as universal cover ("parabolic") and those with the unit disk as universal cover ("hyperbolic"). It further follows that every Riemann surface admits a Riemannian metric of constant curvature, where the curvature can be taken to be 1 in the elliptic, 0 in the parabolic and -1 in the hyperbolic case.
The uniformization theorem also yields a similar classification of closed orientable Riemannian 2-manifolds into elliptic/parabolic/hyperbolic cases. Each such manifold has a conformally equivalent Riemannian metric with constant curvature, where the curvature can be taken to be 1 in the elliptic, 0 in the parabolic and -1 in the hyperbolic case.
Conteúdo 1 História 2 Classification of connected Riemann surfaces 3 Classification of closed oriented Riemannian 2-manifolds 4 Methods of proof 4.1 Hilbert space methods 4.2 Nonlinear flows 5 Generalizações 6 Veja também 7 Notas 8 Referências 8.1 Historic references 8.2 Historical surveys 8.3 Harmonic functions 8.4 Nonlinear differential equations 8.5 General references 9 External links History Felix Klein (1883) and Henri Poincaré (1882) conjectured the uniformization theorem for (the Riemann surfaces of) algebraic curves. Henri Poincaré (1883) extended this to arbitrary multivalued analytic functions and gave informal arguments in its favor. The first rigorous proofs of the general uniformization theorem were given by Poincaré (1907) and Paul Koebe (1907uma, 1907b, 1907c). Paul Koebe later gave several more proofs and generalizations. The history is described in Gray (1994); a complete account of uniformization up to the 1907 papers of Koebe and Poincaré is given with detailed proofs in de Saint-Gervais (2016) (the Bourbaki-type pseudonym of the group of fifteen mathematicians who jointly produced this publication).
Classification of connected Riemann surfaces Every Riemann surface is the quotient of free, proper and holomorphic action of a discrete group on its universal covering and this universal covering, being a simply connected Riemann surface, is holomorphically isomorphic (one also says: "conformally equivalent" ou "biholomorphic") to one of the following: the Riemann sphere the complex plane the unit disk in the complex plane.
For compact Riemann surfaces, those with universal cover the unit disk are precisely the hyperbolic surfaces of genus greater than 1, all with non-abelian fundamental group; those with universal cover the complex plane are the Riemann surfaces of genus 1, namely the complex tori or elliptic curves with fundamental group Z2; and those with universal cover the Riemann sphere are those of genus zero, namely the Riemann sphere itself, with trivial fundamental group.
Classification of closed oriented Riemannian 2-manifolds On an oriented 2-manifold, a Riemannian metric induces a complex structure using the passage to isothermal coordinates. If the Riemannian metric is given locally as {displaystyle ds^{2}=E,dx^{2}+2F,dx,dy+G,dy^{2},} then in the complex coordinate z = x + eu, it takes the form {displaystyle ds^{2}=lambda |dz+mu ,d{overline {z}}|^{2},} Onde {estilo de exibição lambda ={fratura {1}{4}}deixei(E+G+2{quadrado {EG-F^{2}}}certo), mu ={fratura {1}{4lambda }}(E-G+2iF),} so that λ and μ are smooth with λ > 0 e |m| < 1. In isothermal coordinates (u, v) the metric should take the form {displaystyle ds^{2}=rho (du^{2}+dv^{2})} with ρ > 0 suave. The complex coordinate w = u + i v satisfies {estilo de exibição rho ,|dw|^{2}=rho |W_{z}|^{2}deixei|dz+{W_{overline {z}} over w_{z}},d{overline {z}}certo|^{2},} so that the coordinates (você, v) will be isothermal locally provided the Beltrami equation {estilo de exibição {partial w over partial {overline {z}}}=mu {partial w over partial z}} has a locally diffeomorphic solution, ou seja. a solution with non-vanishing Jacobian.
These conditions can be phrased equivalently in terms of the exterior derivative and the Hodge star operator ∗.[1] u and v will be isothermal coordinates if ∗du = dv, where ∗ is defined on differentials by ∗(p dx + q dy) = −q dx + p dy. Let ∆ = ∗d∗d be the Laplace–Beltrami operator. By standard elliptic theory, u can be chosen to be harmonic near a given point, ou seja. Δ u = 0, with du non-vanishing. By the Poincaré lemma dv = ∗du has a local solution v exactly when d(∗du) = 0. This condition is equivalent to Δ u = 0, so can always be solved locally. Since du is non-zero and the square of the Hodge star operator is −1 on 1-forms, du and dv must be linearly independent, so that u and v give local isothermal coordinates.
The existence of isothermal coordinates can be proved by other methods, for example using the general theory of the Beltrami equation, as in Ahlfors (2006), or by direct elementary methods, as in Chern (1955) and Jost (2006).
From this correspondence with compact Riemann surfaces, a classification of closed orientable Riemannian 2-manifolds follows. Each such is conformally equivalent to a unique closed 2-manifold of constant curvature, so a quotient of one of the following by a free action of a discrete subgroup of an isometry group: a esfera (curvature +1) the Euclidean plane (curvature 0) the hyperbolic plane (curvature −1).
genus 0 genus 1 genus 2 genus 3 The first case gives the 2-sphere, the unique 2-manifold with constant positive curvature and hence positive Euler characteristic (equal to 2). The second gives all flat 2-manifolds, ou seja. the tori, which have Euler characteristic 0. The third case covers all 2-manifolds of constant negative curvature, ou seja. the hyperbolic 2-manifolds all of which have negative Euler characteristic. The classification is consistent with the Gauss–Bonnet theorem, which implies that for a closed surface with constant curvature, the sign of that curvature must match the sign of the Euler characteristic. The Euler characteristic is equal to 2 – 2g, where g is the genus of the 2-manifold, ou seja. the number of "holes".
Methods of proof Many classical proofs of the uniformization theorem rely on constructing a real-valued harmonic function on the simply connected Riemann surface, possibly with a singularity at one or two points and often corresponding to a form of Green's function. Four methods of constructing the harmonic function are widely employed: the Perron method; the Schwarz alternating method; Dirichlet's principle; and Weyl's method of orthogonal projection. In the context of closed Riemannian 2-manifolds, several modern proofs invoke nonlinear differential equations on the space of conformally equivalent metrics. These include the Beltrami equation from Teichmüller theory and an equivalent formulation in terms of harmonic maps; Liouville's equation, already studied by Poincaré; and Ricci flow along with other nonlinear flows.
Rado's theorem shows that every Riemann surface is automatically second-countable. Although Rado's theorem is often used in proofs of the uniformization theorem, some proofs have been formulated so that Rado's theorem becomes a consequence. Second countability is automatic for compact Riemann surfaces.
Hilbert space methods See also: Planar Riemann surface § Uniformization theorem In 1913 Hermann Weyl published his classic textbook "Die Idee der Riemannschen Fläche" based on his Göttingen lectures from 1911 para 1912. It was the first book to present the theory of Riemann surfaces in a modern setting and through its three editions has remained influential. Dedicated to Felix Klein, the first edition incorporated Hilbert's treatment of the Dirichlet problem using Hilbert space techniques; Brouwer's contributions to topology; and Koebe's proof of the uniformization theorem and its subsequent improvements. Much later Weyl (1940) developed his method of orthogonal projection which gave a streamlined approach to the Dirichlet problem, also based on Hilbert space; that theory, which included Weyl's lemma on elliptic regularity, was related to Hodge's theory of harmonic integrals; and both theories were subsumed into the modern theory of elliptic operators and L2 Sobolev spaces. In the third edition of his book from 1955, translated into English in Weyl (1964), Weyl adopted the modern definition of differential manifold, in preference to triangulations, but decided not to make use of his method of orthogonal projection. Springer (1957) followed Weyl's account of the uniformisation theorem, but used the method of orthogonal projection to treat the Dirichlet problem. Kodaira (2007) describes the approach in Weyl's book and also how to shorten it using the method of orthogonal projection. A related account can be found in Donaldson (2011).
Nonlinear flows See also: Ricci flow § Relationship to uniformization and geometrization In introducing the Ricci flow, Richard S. Hamilton showed that the Ricci flow on a closed surface uniformizes the metric (ou seja, the flow converges to a constant curvature metric). No entanto, his proof relied on the uniformization theorem. The missing step involved Ricci flow on the 2-sphere: a method for avoiding an appeal to the uniformization theorem (for genus 0) was provided by Chen, Lu & Tian (2006);[2] a short self-contained account of Ricci flow on the 2-sphere was given in Andrews & Bryan (2010).
Generalizations Koebe proved the general uniformization theorem that if a Riemann surface is homeomorphic to an open subset of the complex sphere (or equivalently if every Jordan curve separates it), then it is conformally equivalent to an open subset of the complex sphere.
Dentro 3 dimensões, existem 8 geometries, called the eight Thurston geometries. Not every 3-manifold admits a geometry, but Thurston's geometrization conjecture proved by Grigori Perelman states that every 3-manifold can be cut into pieces that are geometrizable.
The simultaneous uniformization theorem of Lipman Bers shows that it is possible to simultaneously uniformize two compact Riemann surfaces of the same genus >1 with the same quasi-Fuchsian group.
The measurable Riemann mapping theorem shows more generally that the map to an open subset of the complex sphere in the uniformization theorem can be chosen to be a quasiconformal map with any given bounded measurable Beltrami coefficient.
See also p-adic uniformization theorem. Notes ^ DeTurck & Kazdan 1981; Taylor 1996a, pp. 377–378 ^ Brendle 2010 References Historic references Schwarz, H. UMA. (1870), "Über einen Grenzübergang durch alternierendes Verfahren", Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15: 272–286, JFM 02.0214.02. Klein, Félix (1883), "Neue Beiträge zur Riemann'schen Functionentheorie", Anais Matemáticos, 21 (2): 141–218, doi:10.1007/BF01442920, ISSN 0025-5831, JFM 15.0351.01, S2CID 120465625 Koebe, P. (1907uma), "Über die Uniformisierung reeller analytischer Kurven", Göttinger Nachrichten: 177-190, JFM 38.0453.01 Koebe, P. (1907b), "Über die Uniformisierung beliebiger analytischer Kurven", Göttinger Nachrichten: 191–210, JFM 38.0454.01 Koebe, P. (1907c), "Über die Uniformisierung beliebiger analytischer Kurven (Zweite Mitteilung)", Göttinger Nachrichten: 633–669, JFM 38.0455.02 Koebe, Paulo (1910uma), "Über die Uniformisierung beliebiger analytischer Kurven", Revista de Matemática Pura e Aplicada, 138: 192-253, doi:10.1515/crll.1910.138.192, S2CID 120198686 Koebe, Paulo (1910b), "Über die Hilbertsche Uniformlsierungsmethode" (PDF), Göttinger Nachrichten: 61–65 Poincaré, H. (1882), "Mémoire sur les fonctions fuchsiennes", Revista de Matemática, 1: 193–294, doi:10.1007/BF02592135, ISSN 0001-5962, JFM 15.0342.01 Poincaré, Henrique (1883), "Sur un théorème de la théorie générale des fonctions", Boletim da Sociedade de Matemática da França, 11: 112–125, doi:10.24033/bsmf.261, ISSN 0037-9484, JFM 15.0348.01 Poincaré, Henrique (1907), "Sur l'uniformisation des fonctions analytiques", Revista de Matemática, 31: 1-63, doi:10.1007/BF02415442, ISSN 0001-5962, JFM 38.0452.02 Hilbert, Davi (1909), "Zur Theorie der konformen Abbildung" (PDF), Göttinger Nachrichten: 314–323 Perron, O. (1923), "Eine neue Behandlung der ersten Randwertaufgabe für Δu=0", Diário de Matemática, 18 (1): 42–54, doi:10.1007/BF01192395, ISSN 0025-5874, S2CID 122843531 Weyl, Hermann (1913), Die Idee der Riemannschen Fläche (1997 reprint of the 1913 German original), Teubner, ISBN 978-3-8154-2096-6 Weyl, Hermann (1940), "The method of orthogonal projections in potential theory", Duque Matemática. J., 7: 411-444, doi:10.1215/s0012-7094-40-00725-6 Historical surveys Abikoff, William (1981), "The uniformization theorem", América. Matemática. Por mês, 88 (8): 574–592, doi:10.2307/2320507, JSTOR 2320507 Gray, Jeremy (1994), "On the history of the Riemann mapping theorem" (PDF), Rendiconti del Circolo Matematico di Palermo. Série II. Supplemento (34): 47-94, MR 1295591 Bottazzini, Umberto; Gray, Jeremy (2013), Hidden Harmony—Geometric Fantasies: The Rise of Complex Function Theory, Sources and Studies in the History of Mathematics and Physical Sciences, Springer, ISBN 978-1461457251 de Saint-Gervais, Henri Paul (2016), Uniformization of Riemann Surfaces: revisiting a hundred-year-old theorem, translated by Robert G. Burns, Sociedade Europeia de Matemática, doi:10.4171/145, ISBN 978-3-03719-145-3, translation of French text (prepared in 2007 during centenary of 1907 papers of Koebe and Poincaré) Harmonic functions Perron's method Heins, M. (1949), "The conformal mapping of simply-connected Riemann surfaces", Ana. of Math., 50 (3): 686–690, doi:10.2307/1969555, JSTOR 1969555 Heins, M. (1951), "Interior mapping of an orientable surface into S2", Proc. América. Matemática. Soc., 2 (6): 951–952, doi:10.1090/s0002-9939-1951-0045221-4 Heins, M. (1957), "The conformal mapping of simply-connected Riemann surfaces. II", Nagoya Math. J., 12: 139-143, doi:10.1017/s002776300002198x Pfluger, Alberto (1957), Theorie der Riemannschen Flächen, Springer Ahlfors, Lars V. (2010), Conformal invariants: topics in geometric function theory, Editora AMS Chelsea, ISBN 978-0-8218-5270-5 Beardon, UMA. F. (1984), "A primer on Riemann surfaces", Série de notas de palestras da London Mathematical Society, Cambridge University Press, 78, ISBN 978-0521271042 Forster, Otto (1991), Lectures on Riemann surfaces, Textos de Graduação em Matemática, volume. 81, translated by Bruce Gilligan, Springer, ISBN 978-0-387-90617-1 Farkas, Hershel M.; Kra, Irwin (1980), Riemann surfaces (2ª edição), Springer, ISBN 978-0-387-90465-8 Gamelin, Theodore W. (2001), Análise complexa, Undergraduate Texts in Mathematics, Springer, ISBN 978-0-387-95069-3 Hubbard, John H. (2006), Teichmüller theory and applications to geometry, topologia, and dynamics. Volume. 1. Teichmüller theory, Matrix Editions, ISBN 978-0971576629 Schlag, Guilherme (2014), A course in complex analysis and Riemann surfaces., Pós Graduação em Matemática, volume. 154, Sociedade Americana de Matemática, ISBN 978-0-8218-9847-5 Schwarz's alternating method Nevanlinna, Rolf (1953), Uniformisierung, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, volume. 64, Springer Behnke, Heinrich; Sommer, Friedrich (1965), Theorie der analytischen Funktionen einer komplexen Veränderlichen, Os ensinamentos básicos das ciências matemáticas, volume. 77 (3rd ed.), Springer Freitag, Eberhard (2011), Análise complexa. 2. Riemann surfaces, several complex variables, abelian functions, higher modular functions, Springer, ISBN 978-3-642-20553-8 Dirichlet principle Weyl, Hermann (1964), The concept of a Riemann surface, translated by Gerald R. MacLane, Addison-Wesley, MR 0069903 Courant, Ricardo (1977), Dirichlet's principle, conformal mapping, and minimal surfaces, Springer, ISBN 978-0-387-90246-3 Siegel, C. eu. (1988), Topics in complex function theory. Volume. EU. Elliptic functions and uniformization theory, translated by A. Shenitzer; D. Solitário, Wiley, ISBN 978-0471608448 Weyl's method of orthogonal projection Springer, Jorge (1957), Introduction to Riemann surfaces, Addison-Wesley, MR 0092855 Kodaira, Kunihiko (2007), Análise complexa, Estudos de Cambridge em Matemática Avançada, volume. 107, Cambridge University Press, ISBN 9780521809375 Donaldson, Simão (2011), Riemann surfaces, Oxford Graduate Texts in Mathematics, volume. 22, imprensa da Universidade de Oxford, ISBN 978-0-19-960674-0 Sario operators Sario, Leo (1952), "A linear operator method on arbitrary Riemann surfaces", Trans. América. Matemática. Soc., 72 (2): 281-295, doi:10.1090/s0002-9947-1952-0046442-2 Ahlfors, Lars V.; Sario, Leo (1960), Riemann surfaces, Princeton Mathematical Series, volume. 26, Princeton University Press Nonlinear differential equations Beltrami's equation Ahlfors, Lars V. (2006), Lectures on quasiconformal mappings, University Lecture Series, volume. 38 (2ª edição), Sociedade Americana de Matemática, ISBN 978-0-8218-3644-6 Ahlfors, Lars V.; Bers, Lipman (1960), "Riemann's mapping theorem for variable metrics", Ana. of Math., 72 (2): 385–404, doi:10.2307/1970141, JSTOR 1970141 Bers, Lipman (1960), "Simultaneous uniformization", Touro. América. Matemática. Soc., 66 (2): 94–97, doi:10.1090/s0002-9904-1960-10413-2 Bers, Lipman (1961), "Uniformization by Beltrami equations", Comunicação. Pure Appl. Matemática., 14 (3): 215–228, doi:10.1002/cpa.3160140304 Bers, Lipman (1972), "Uniformization, moduli, and Kleinian groups", O Boletim da Sociedade Matemática de Londres, 4 (3): 257–300, doi:10.1112/blms/4.3.257, ISSN 0024-6093, MR 0348097 Harmonic maps Jost, Jürgen (2006), Compact Riemann surfaces: an introduction to contemporary mathematics (3rd ed.), Springer, ISBN 978-3-540-33065-3 Liouville's equation Berger, Melvyn S. (1971), "Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds", Jornal de Geometria Diferencial, 5 (3-4): 325-332, doi:10.4310/jdg/1214429996 Berger, Melvyn S. (1977), Nonlinearity and functional analysis, Imprensa Acadêmica, ISBN 978-0-12-090350-4 Taylor, Michael E. (2011), Partial differential equations III. Nonlinear equations, Applied Mathematical Sciences, volume. 117 (2ª edição), Springer, ISBN 978-1-4419-7048-0 Flows on Riemannian metrics Hamilton, Richard S. (1988), "The Ricci flow on surfaces", Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Matemática., volume. 71, Sociedade Americana de Matemática, pp. 237–262 Chow, Bennett (1991), "The Ricci flow on the 2-sphere", J. Differential Geom., 33 (2): 325-334, doi:10.4310/jdg/1214446319 Osgood, B.; Phillips, R.; História, P. (1988), "Extremals of determinants of Laplacians", J. Função. Anal., 80: 148-211, CiteSeerX 10.1.1.486.558, doi:10.1016/0022-1236(88)90070-5 Chrusciel, P. (1991), "Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation", Communications in Mathematical Physics, 137 (2): 289-313, Bibcode:1991CMaPh.137..289C, CiteSeerX 10.1.1.459.9029, doi:10.1007/bf02431882, S2CID 53641998 Chang, Shu-Cheng (2000), "Global existence and convergence of solutions of Calabi flow on surfaces of genus h ≥ 2", J. Matemática. Kyoto Univ., 40 (2): 363-377, doi:10.1215/kjm/1250517718 Brendle, Simão (2010), Ricci flow and the sphere theorem, Pós Graduação em Matemática, volume. 111, Sociedade Americana de Matemática, ISBN 978-0-8218-4938-5 Chen, Xiuxiong; Lu, Peng; Tian, Gang (2006), "A note on uniformization of Riemann surfaces by Ricci flow", Anais da American Mathematical Society, 134 (11): 3391–3393, doi:10.1090/S0002-9939-06-08360-2, ISSN 0002-9939, MR 2231924 Andrews, Ben; Bryan, Paulo (2010), "Curvature bounds by isoperimetric comparison for normalized Ricci flow on the two-sphere", Calc. Era. Equações diferenciais parciais, 39 (3-4): 419–428, arXiv:0908.3606, doi:10.1007/s00526-010-0315-5, S2CID 1095459 Mazzeo, Rafe; Taylor, Michael (2002), "Curvature and uniformization", Jornal de Matemática de Israel, 130: 323–346, arXiv:math/0105016, doi:10.1007/bf02764082, S2CID 7192529 Struwe, Michael (2002), "Curvature flows on surfaces", Ana. Sc. Norm. Super. Pisa Cl. Sci., 1: 247–274 General references Chern, Shiing-shen (1955), "An elementary proof of the existence of isothermal parameters on a surface", Proc. América. Matemática. Soc., 6 (5): 771–782, doi:10.2307/2032933, JSTOR 2032933 DeTurck, Dennis M.; De Kaz, Jerry L. (1981), "Some regularity theorems in Riemannian geometry", Annales Scientifiques de l'École Normale Supérieure, Série 4, 14 (3): 249-260, doi:10.24033/asens.1405, ISSN 0012-9593, MR 0644518. Gusevskii, N.A. (2001) [1994], "Uniformization", Enciclopédia de Matemática, EMS Press Krushkal, S. EU.; Apanasov, B. N.; Gusevskiĭ, N. UMA. (1986) [1981], Kleinian groups and uniformization in examples and problems, Traduções de Monografias Matemáticas, volume. 62, Providência, R.I.: Sociedade Americana de Matemática, ISBN 978-0-8218-4516-5, MR 0647770 Taylor, Michael E. (1996uma), Equações Diferenciais Parciais I: Teoria Básica, Springer, pp. 376–378, ISBN 978-0-387-94654-2 Taylor, Michael E. (1996b), Partial Differential Equations II:Qualitative studies of linear equations, Springer, ISBN 978-0-387-94651-1 Bers, Lipman; John, Fritz; Schechter, Martinho (1979), Partial differential equations (reprint of the 1964 original), Lectures in Applied Mathematics, volume. 3UMA, Sociedade Americana de Matemática, ISBN 978-0-8218-0049-2 Griffiths, Phillip; Harris, Joseph (1994), Principles of algebraic geometry, Wiley, ISBN 978-0-471-05059-9 Warner, Frank W. (1983), Foundations of differentiable manifolds and Lie groups, Textos de Graduação em Matemática, volume. 94, Springer, ISBN 978-0-387-90894-6 External links Conformal Transformation: from Circle to Square. ocultar manifolds vte (Glossário) Basic concepts Topological manifold AtlasDifferentiable/Smooth manifold Differential structureSmooth atlasSubmanifoldRiemannian manifoldSmooth mapSubmersionPushforwardTangent spaceDifferential formVector field Main results (Lista) Atiyah–Singer indexDarboux'sDe Rham'sFrobeniusGeneralized StokesHopf–RinowNoether'sSard'sWhitney embedding Maps CurveDiffeomorphism LocalGeodesicExponential map in Lie theoryFoliationImmersionIntegral curveLie derivativeSectionSubmersion Types of manifolds Closed(Quase) Complex(Quase) ContactFiberedFinslerFlatG-structureHadamardHermitianHyperbolicKählerKenmotsuLie group Lie algebraManifold with boundaryOrientedParallelizablePoissonPrimeQuaternionicHypercomplex(Pseudo−, Sub−) RiemannianRizza(Quase) SymplecticTame Tensors Vectors DistributionLie bracketPushforwardTangent space bundleTorsionVector fieldVector flow Covectors Closed/ExactCovariant derivativeCotangent space bundleDe Rham cohomologyDifferential form Vector-valuedExterior derivativeInterior productPullbackRicci curvature flowRiemann curvature tensorTensor field densityVolume formWedge product Bundles AdjointAffineAssociatedCotangentDualFiber(Companhia) FibrationJetLie algebra(Estábulo) NormalPrincipalSpinorSubbundleTangentTensorVector Connections AffineCartanEhresmannFormGeneralizedKoszulLevi-CivitaPrincipalVectorParallel transport Related Classification of manifoldsGauge theoryHistoryMorse theoryMoving frameSingularity theory Generalizations Banach manifoldDiffeologyDiffietyFréchet manifoldK-theoryOrbifoldSecondary calculus over commutative algebrasSheafStratifoldSupermanifoldTopologically stratified space Categories: ManifoldsRiemann surfacesTheorems in differential geometry
Se você quiser conhecer outros artigos semelhantes a Uniformization theorem você pode visitar a categoria Manifolds.
Deixe uma resposta