# Subspace theorem

Subspace theorem In mathematics, the subspace theorem says that points of small height in projective space lie in a finite number of hyperplanes. It is a result obtained by Wolfgang M. Schmidt (1972).

Contents 1 Statement 2 Applications 2.1 A corollary on Diophantine approximation 3 References Statement The subspace theorem states that if L1,...,Ln are linearly independent linear forms in n variables with algebraic coefficients and if ε>0 is any given real number, then the non-zero integer points x with {displaystyle |L_{1}(x)cdots L_{n}(x)|<|x|^{-epsilon }} lie in a finite number of proper subspaces of Qn. A quantitative form of the theorem, in which the number of subspaces containing all solutions, was also obtained by Schmidt, and the theorem was generalised by Schlickewei (1977) to allow more general absolute values on number fields. Applications The theorem may be used to obtain results on Diophantine equations such as Siegel's theorem on integral points and solution of the S-unit equation.[1] A corollary on Diophantine approximation The following corollary to the subspace theorem is often itself referred to as the subspace theorem. If a1,...,an are algebraic such that 1,a1,...,an are linearly independent over Q and ε>0 is any given real number, then there are only finitely many rational n-tuples (x1/y,...,xn/y) with {displaystyle |a_{i}-x_{i}/y|

Si quieres conocer otros artículos parecidos a **Subspace theorem** puedes visitar la categoría **Diophantine approximation**.

Deja una respuesta