# Slutsky's theorem Slutsky's theorem In probability theory, Slutsky's theorem extends some properties of algebraic operations on convergent sequences of real numbers to sequences of random variables. The theorem was named after Eugen Slutsky. Slutsky's theorem is also attributed to Harald Cramér. Contents 1 Statement 2 Proof 3 See also 4 References 5 Further reading Statement Let {displaystyle X_{n},Y_{n}} be sequences of scalar/vector/matrix random elements. If {displaystyle X_{n}} converges in distribution to a random element {displaystyle X} and {displaystyle Y_{n}} converges in probability to a constant {displaystyle c} , then {displaystyle X_{n}+Y_{n} {xrightarrow {d}} X+c;} {displaystyle X_{n}Y_{n} xrightarrow {d} Xc;} {displaystyle X_{n}/Y_{n} {xrightarrow {d}} X/c,}   provided that c is invertible, where {displaystyle {xrightarrow {d}}} denotes convergence in distribution.

Notes: The requirement that Yn converges to a constant is important — if it were to converge to a non-degenerate random variable, the theorem would be no longer valid. For example, let {displaystyle X_{n}sim {rm {Uniform}}(0,1)} and {displaystyle Y_{n}=-X_{n}} . The sum {displaystyle X_{n}+Y_{n}=0} for all values of n. Moreover, {displaystyle Y_{n},xrightarrow {d} ,{rm {Uniform}}(-1,0)} , but {displaystyle X_{n}+Y_{n}} does not converge in distribution to {displaystyle X+Y} , where {displaystyle Xsim {rm {Uniform}}(0,1)} , {displaystyle Ysim {rm {Uniform}}(-1,0)} , and {displaystyle X} and {displaystyle Y} are independent. The theorem remains valid if we replace all convergences in distribution with convergences in probability. Proof This theorem follows from the fact that if Xn converges in distribution to X and Yn converges in probability to a constant c, then the joint vector (Xn, Yn) converges in distribution to (X, c) (see here).

Next we apply the continuous mapping theorem, recognizing the functions g(x,y) = x + y, g(x,y) = xy, and g(x,y) = x y−1 are continuous (for the last function to be continuous, y has to be invertible).

See also Convergence of random variables References ^ Goldberger, Arthur S. (1964). Econometric Theory. New York: Wiley. pp. 117–120. ^ Slutsky, E. (1925). "Über stochastische Asymptoten und Grenzwerte". Metron (in German). 5 (3): 3–89. JFM 51.0380.03. ^ Slutsky's theorem is also called Cramér's theorem according to Remark 11.1 (page 249) of Gut, Allan (2005). Probability: a graduate course. Springer-Verlag. ISBN 0-387-22833-0. ^ See Zeng, Donglin (Fall 2018). "Large Sample Theory of Random Variables (lecture slides)" (PDF). Advanced Probability and Statistical Inference I (BIOS 760). University of North Carolina at Chapel Hill. Slide 59. Further reading Casella, George; Berger, Roger L. (2001). Statistical Inference. Pacific Grove: Duxbury. pp. 240–245. ISBN 0-534-24312-6. Grimmett, G.; Stirzaker, D. (2001). Probability and Random Processes (3rd ed.). Oxford. Hayashi, Fumio (2000). Econometrics. Princeton University Press. pp. 92–93. ISBN 0-691-01018-8. Categories: Asymptotic theory (statistics)Probability theoremsTheorems in statistics

Si quieres conocer otros artículos parecidos a Slutsky's theorem puedes visitar la categoría Asymptotic theory (statistics).

Subir

Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información