Schreier refinement theorem

Schreier refinement theorem In mathematics, the Schreier refinement theorem of group theory states that any two subnormal series of subgroups of a given group have equivalent refinements, where two series are equivalent if there is a bijection between their factor groups that sends each factor group to an isomorphic one.

The theorem is named after the Austrian mathematician Otto Schreier who proved it in 1928. It provides an elegant proof of the Jordan–Hölder theorem. It is often proved using the Zassenhaus lemma. Baumslag (2006) gives a short proof by intersecting the terms in one subnormal series with those in the other series.

Example Consider {displaystyle mathbb {Z} _{2}times S_{3}} , where {displaystyle S_{3}} is the symmetric group of degree 3. The alternating group {displaystyle A_{3}} is a normal subgroup of {displaystyle S_{3}} , so we have the two subnormal series {displaystyle {0}times {(1)};triangleleft ;mathbb {Z} _{2}times {(1)};triangleleft ;mathbb {Z} _{2}times S_{3},} {displaystyle {0}times {(1)};triangleleft ;{0}times A_{3};triangleleft ;mathbb {Z} _{2}times S_{3},} with respective factor groups {displaystyle (mathbb {Z} _{2},S_{3})} and {displaystyle (A_{3},mathbb {Z} _{2}times mathbb {Z} _{2})} .

The two subnormal series are not equivalent, but they have equivalent refinements: {displaystyle {0}times {(1)};triangleleft ;mathbb {Z} _{2}times {(1)};triangleleft ;mathbb {Z} _{2}times A_{3};triangleleft ;mathbb {Z} _{2}times S_{3}} with factor groups isomorphic to {displaystyle (mathbb {Z} _{2},A_{3},mathbb {Z} _{2})} and {displaystyle {0}times {(1)};triangleleft ;{0}times A_{3};triangleleft ;{0}times S_{3};triangleleft ;mathbb {Z} _{2}times S_{3}} with factor groups isomorphic to {displaystyle (A_{3},mathbb {Z} _{2},mathbb {Z} _{2})} .

References Baumslag, Benjamin (2006), "A simple way of proving the Jordan-Hölder-Schreier theorem", American Mathematical Monthly, 113 (10): 933–935, doi:10.2307/27642092, JSTOR 27642092 This abstract algebra-related article is a stub. You can help Wikipedia by expanding it.

Categories: Theorems in group theoryAbstract algebra stubs

Si quieres conocer otros artículos parecidos a Schreier refinement theorem puedes visitar la categoría Abstract algebra stubs.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información