Le théorème de Saccheri-Legendre

Saccheri–Legendre theorem In absolute geometry, the Saccheri–Legendre theorem states that the sum of the angles in a triangle is at most 180°.[1] Absolute geometry is the geometry obtained from assuming all the axioms that lead to Euclidean geometry with the exception of the axiom that is equivalent to the parallel postulate of Euclid.[2] The theorem is named after Giovanni Girolamo Saccheri and Adrien-Marie Legendre.

The existence of at least one triangle with angle sum of 180 degrees in absolute geometry implies Euclid's parallel postulate. De la même manière, the existence of at least one triangle with angle sum of less than 180 degrees implies the characteristic postulate of hyperbolic geometry.

Max Dehn gave an example of a non-Legendrian geometry where the angle sum of a triangle is greater than 180 degrees, and a semi-Euclidean geometry where there is a triangle with an angle sum of 180 degrees but Euclid's parallel postulate fails. In Dehn's geometries the Archimedean axiom does not hold.

Notes ^ Greenberg, Marvin J. (1993), "Saccheri–Legendre Theorem", Euclidean and Non-Euclidean Geometries: Development and History, Macmillan, pp. 124–128, ISBN 9780716724469. ^ There are many axiom systems that yield Euclidean geometry and they all contain an axiom that is logically equivalent to Euclid's parallel postulate. Cet article lié à la géométrie est un bout. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Euclidean geometryTheorems about trianglesNon-Euclidean geometryGeometry stubs

Si vous voulez connaître d'autres articles similaires à Le théorème de Saccheri-Legendre vous pouvez visiter la catégorie Géométrie euclidienne.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations