Ryll-Nardzewski fixed-point theorem

Ryll-Nardzewski fixed-point theorem In functional analysis, a branch of mathematics, the Ryll-Nardzewski fixed-point theorem states that if {displaystyle E} is a normed vector space and {displaystyle K} is a nonempty convex subset of {displaystyle E} that is compact under the weak topology, then every group (or equivalently: every semigroup) of affine isometries of {displaystyle K} has at least one fixed point. (Here, a fixed point of a set of maps is a point that is fixed by each map in the set.) This theorem was announced by Czesław Ryll-Nardzewski.[1] Later Namioka and Asplund [2] gave a proof based on a different approach. Ryll-Nardzewski himself gave a complete proof in the original spirit.[3] Applications The Ryll-Nardzewski theorem yields the existence of a Haar measure on compact groups.[4] See also Fixed-point theorems Fixed-point theorems in infinite-dimensional spaces References ^ Ryll-Nardzewski, C. (1962). "Generalized random ergodic theorems and weakly almost periodic functions". Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 10: 271–275. ^ Namioka, I.; Asplund, E. (1967). "A geometric proof of Ryll-Nardzewski's fixed point theorem". Bull. Amer. Math. Soc. 73 (3): 443–445. doi:10.1090/S0002-9904-1967-11779-8. ^ Ryll-Nardzewski, C. (1967). "On fixed points of semi-groups of endomorphisms of linear spaces". Proc. 5th Berkeley Symp. Probab. Math. Stat. Univ. California Press. 2: 1: 55–61. ^ Bourbaki, N. (1981). Espaces vectoriels topologiques. Chapitres 1 à 5. Éléments de mathématique. (New ed.). Paris: Masson. ISBN 2-225-68410-3. Andrzej Granas and James Dugundji, Fixed Point Theory (2003) Springer-Verlag, New York, ISBN 0-387-00173-5. A proof written by J. Lurie hide vte Functional analysis (topics – glossary) Spaces BanachBesovFréchetHilbertHölderNuclearOrliczSchwartzSobolevtopological vector Properties barrelledcompletedual (algebraic/topological)locally convexreflexiveseparable Theorems Hahn–BanachRiesz representationclosed graphuniform boundedness principleKakutani fixed-pointKrein–Milmanmin–maxGelfand–NaimarkBanach–Alaoglu Operators adjointboundedcompactHilbert–Schmidtnormalnucleartrace classtransposeunboundedunitary Algebras Banach algebraC*-algebraspectrum of a C*-algebraoperator algebragroup algebra of a locally compact groupvon Neumann algebra Open problems invariant subspace problemMahler's conjecture Applications Hardy spacespectral theory of ordinary differential equationsheat kernelindex theoremcalculus of variationsfunctional calculusintegral operatorJones polynomialtopological quantum field theorynoncommutative geometryRiemann hypothesisdistribution (or generalized functions) Advanced topics approximation propertybalanced setChoquet theoryweak topologyBanach–Mazur distanceTomita–Takesaki theory Categories: Fixed-point theoremsTheorems in functional analysis

Si quieres conocer otros artículos parecidos a Ryll-Nardzewski fixed-point theorem puedes visitar la categoría Fixed-point theorems.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Subir

Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información