# Routh–Hurwitz theorem Routh–Hurwitz theorem This article includes a list of references, weiterführende Lektüre oder externe Links, Die Quellen bleiben jedoch unklar, da Inline-Zitate fehlen. Bitte helfen Sie mit, diesen Artikel zu verbessern, indem Sie genauere Zitate einfügen. (Marsch 2012) (Erfahren Sie, wie und wann Sie diese Vorlagennachricht entfernen können) In Mathematik, the Routh–Hurwitz theorem gives a test to determine whether all roots of a given polynomial lie in the left half-plane. Polynomials with this property are called Hurwitz stable polynomials. The Routh-Hurwitz theorem is important in dynamical systems and control theory, because the characteristic polynomial of the differential equations of a stable linear system has roots limited to the left half plane (negative eigenvalues). Thus the theorem provides a test to determine whether a linear dynamical system is stable without solving the system. The Routh–Hurwitz theorem was proved in 1895, and it was named after Edward John Routh and Adolf Hurwitz.

Inhalt 1 Notations 2 Aussage 3 Routh–Hurwitz stability criterion 4 Verweise 5 External links Notations Let f(z) be a polynomial (with complex coefficients) of degree n with no roots on the imaginary axis (d.h. the line Z = ic where i is the imaginary unit and c is a real number). Let us define {Anzeigestil P_{0}(j)} (a polynomial of degree n) und {Anzeigestil P_{1}(j)} (a nonzero polynomial of degree strictly less than n) durch {Anzeigestil f(ich)=P_{0}(j)+iP_{1}(j)} , respectively the real and imaginary parts of f on the imaginary line.

Außerdem, let us denote by: p the number of roots of f in the left half-plane (taking into account multiplicities); q the number of roots of f in the right half-plane (taking into account multiplicities); {displaystyle Delta arg f(ich)} the variation of the argument of f(ich) when y runs from −∞ to +∞; w(x) is the number of variations of the generalized Sturm chain obtained from {Anzeigestil P_{0}(j)} und {Anzeigestil P_{1}(j)} by applying the Euclidean algorithm; {Anzeigestil I_{-unendlich }^{+unendlich }r} is the Cauchy index of the rational function r over the real line. Statement With the notations introduced above, the Routh–Hurwitz theorem states that: {displaystyle p-q={frac {1}{Pi }}Delta arg f(ich)=left.{Start{Fälle}+ICH_{-unendlich }^{+unendlich }{frac {P_{0}(j)}{P_{1}(j)}}&{Text{for odd degree}}\[10Punkt]-ICH_{-unendlich }^{+unendlich }{frac {P_{1}(j)}{P_{0}(j)}}&{Text{for even degree}}Ende{Fälle}}Rechts}=w(+unendlich )-w(-unendlich ).} From the first equality we can for instance conclude that when the variation of the argument of f(ich) is positive, then f(z) will have more roots to the left of the imaginary axis than to its right. The equality p − q = w(+∞) − w(−∞) can be viewed as the complex counterpart of Sturm's theorem. Note the differences: in Sturm's theorem, the left member is p + q and the w from the right member is the number of variations of a Sturm chain (while w refers to a generalized Sturm chain in the present theorem).

Routh–Hurwitz stability criterion Main article: Routh–Hurwitz stability criterion We can easily determine a stability criterion using this theorem as it is trivial that f(z) is Hurwitz-stable iff p − q = n. We thus obtain conditions on the coefficients of f(z) by imposing w(+∞) = n and w(−∞) = 0.

References Routh, E.J. (1877). A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion. Macmillan and co. Hurwitz, EIN. (1964). "On The Conditions Under Which An Equation Has Only Roots With Negative Real Parts". In Bellman, Richard; Kalaba, Robert E. (Hrsg.). Selected Papers on Mathematical Trends in Control Theory. New York: Dover. Gantmacher, F. R. (2005) . Applications of the Theory of Matrices. New York: Dover. pp. 226–233. ISBN 0-486-44554-2. Rahman, Q. ICH.; Schmeisser, G. (2002). Analytic theory of polynomials. Monographien der London Mathematical Society. Neue Serien. Vol. 26. Oxford: Oxford University Press. ISBN 0-19-853493-0. Zbl 1072.30006. External links Mathworld entry Categories: Theorems about polynomialsTheorems in complex analysisTheorems in real analysis

Wenn Sie andere ähnliche Artikel wissen möchten Routh–Hurwitz theorem Sie können die Kategorie besuchen Sätze über Polynome.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen