# Teorema da série de Riemann

Riemann series theorem In mathematics, the Riemann series theorem (also called the Riemann rearrangement theorem), named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, or diverges. This implies that a series of real numbers is absolutely convergent if and only if it is unconditionally convergent.

Como um exemplo, the series 1 − 1 + 1/2 − 1/2 + 1/3 − 1/3 + ⋯ converges to 0 (for a sufficiently large number of terms, the partial sum gets arbitrarily near to 0); but replacing all terms with their absolute values gives 1 + 1 + 1/2 + 1/2 + 1/3 + 1/3 + , which sums to infinity. Thus the original series is conditionally convergent, and can be rearranged (by taking the first two positive terms followed by the first negative term, followed by the next two positive terms and then the next negative term, etc.) to give a series that converges to a different sum: 1 + 1/2 − 1 + 1/3 + 1/4 − 1/2 + ⋯ = ln 2. De forma geral, using this procedure with p positives followed by q negatives gives the sum ln(p/q). Other rearrangements give other finite sums or do not converge to any sum.

Conteúdo 1 Definições 2 Declaração do teorema 3 Alternating harmonic series 3.1 Changing the sum 3.2 Getting an arbitrary sum 4 Prova 4.1 Existence of a rearrangement that sums to any positive real M 4.2 Existence of a rearrangement that diverges to infinity 4.3 Existence of a rearrangement that fails to approach any limit, finito ou infinito 5 Generalizações 5.1 Sierpiński theorem 5.2 Teorema de Steinitz 6 Veja também 7 References Definitions A series {textstyle sum _{n=1}^{infty }uma_{n}} converges if there exists a value {ell de estilo de exibição } such that the sequence of the partial sums {estilo de exibição (S_{1},S_{2},S_{3},ldots ),quad S_{n}=soma _{k=1}^{n}uma_{k},} converge para {ell de estilo de exibição } . Aquilo é, for any ε > 0, there exists an integer N such that if n ≥ N, então {displaystyle leftvert S_{n}-ell rightvert leq epsilon .} A series converges conditionally if the series {textstyle sum _{n=1}^{infty }uma_{n}} converges but the series {textstyle sum _{n=1}^{infty }leftvert a_{n}rightvert } diverges.

A permutation is simply a bijection from the set of positive integers to itself. This means that if {estilo de exibição sigma } is a permutation, then for any positive integer {estilo de exibição b,} there exists exactly one positive integer {estilo de exibição a} de tal modo que {estilo de exibição sigma (uma)=b.} Em particular, E se {estilo de exibição xneq y} , então {estilo de exibição sigma (x)neq sigma (y)} .

Statement of the theorem Suppose that {estilo de exibição (uma_{1},uma_{2},uma_{3},ldots )} is a sequence of real numbers, and that {textstyle sum _{n=1}^{infty }uma_{n}} is conditionally convergent. Deixar {estilo de exibição M} be a real number. Then there exists a permutation {estilo de exibição sigma } de tal modo que {soma de estilo de exibição _{n=1}^{infty }uma_{sigma (n)}=M.} There also exists a permutation {estilo de exibição sigma } de tal modo que {soma de estilo de exibição _{n=1}^{infty }uma_{sigma (n)}=infty .} The sum can also be rearranged to diverge to {estilo de exibição -infty } or to fail to approach any limit, finito ou infinito.

Alternating harmonic series Changing the sum The alternating harmonic series is a classic example of a conditionally convergent series: {soma de estilo de exibição _{n=1}^{infty }{fratura {(-1)^{n+1}}{n}}} is convergent, whereas {soma de estilo de exibição _{n=1}^{infty }deixei|{fratura {(-1)^{n+1}}{n}}certo|=soma _{n=1}^{infty }{fratura {1}{n}}} is the ordinary harmonic series, which diverges. Although in standard presentation the alternating harmonic series converges to ln(2), its terms can be arranged to converge to any number, or even to diverge. One instance of this is as follows. Begin with the series written in the usual order, {estilo de exibição 1-{fratura {1}{2}}+{fratura {1}{3}}-{fratura {1}{4}}+cdots } and rearrange the terms: {estilo de exibição 1-{fratura {1}{2}}-{fratura {1}{4}}+{fratura {1}{3}}-{fratura {1}{6}}-{fratura {1}{8}}+{fratura {1}{5}}-{fratura {1}{10}}-{fratura {1}{12}}+cdots } where the pattern is: the first two terms are 1 and −1/2, whose sum is 1/2. The next term is −1/4. The next two terms are 1/3 and −1/6, whose sum is 1/6. The next term is −1/8. The next two terms are 1/5 and −1/10, whose sum is 1/10. No geral, the sum is composed of blocks of three: {estilo de exibição {fratura {1}{2k-1}}-{fratura {1}{2(2k-1)}}-{fratura {1}{4k}},quad k=1,2,dots .} This is indeed a rearrangement of the alternating harmonic series: every odd integer occurs once positively, and the even integers occur once each, negatively (half of them as multiples of 4, the other half as twice odd integers). Desde {estilo de exibição {fratura {1}{2k-1}}-{fratura {1}{2(2k-1)}}={fratura {1}{2(2k-1)}},} this series can in fact be written: {estilo de exibição {começar{alinhado}&{fratura {1}{2}}-{fratura {1}{4}}+{fratura {1}{6}}-{fratura {1}{8}}+{fratura {1}{10}}+cdots +{fratura {1}{2(2k-1)}}-{fratura {1}{2(2k)}}+cdots \={}&{fratura {1}{2}}deixei(1-{fratura {1}{2}}+{fratura {1}{3}}-cdots certo)={fratura {1}{2}}ln(2)fim{alinhado}}} which is half the usual sum.

Getting an arbitrary sum An efficient way to recover and generalize the result of the previous section is to use the fact that {estilo de exibição 1+{1 sobre 2}+{1 sobre 3}+cdots +{1 over n}=gamma +ln n+o(1),} where γ is the Euler–Mascheroni constant, and where the notation o(1) denotes a quantity that depends upon the current variable (aqui, the variable is n) in such a way that this quantity goes to 0 when the variable tends to infinity.

It follows that the sum of q even terms satisfies {estilo de exibição {1 sobre 2}+{1 sobre 4}+{1 sobre 6}+cdots +{1 over 2q}={1 sobre 2},gama +{1 sobre 2}ln q+o(1),} and by taking the difference, one sees that the sum of p odd terms satisfies {estilo de exibição {1}+{1 sobre 3}+{1 sobre 5}+cdots +{1 over 2p-1}={1 sobre 2},gama +{1 sobre 2}ln p+ln 2+o(1).} Suppose that two positive integers a and b are given, and that a rearrangement of the alternating harmonic series is formed by taking, in order, a positive terms from the alternating harmonic series, followed by b negative terms, and repeating this pattern at infinity (the alternating series itself corresponds to a = b = 1, the example in the preceding section corresponds to a = 1, b = 2): {estilo de exibição {1}+{1 sobre 3}+cdots +{1 over 2a-1}-{1 sobre 2}-{1 sobre 4}-cdots -{1 over 2b}+{1 over 2a+1}+cdots +{1 over 4a-1}-{1 over 2b+2}-cdots } Then the partial sum of order (a+b)n of this rearranged series contains p = an positive odd terms and q = bn negative even terms, por isso {estilo de exibição S_{(a+b)n}={1 sobre 2}ln p+ln 2-{1 sobre 2}ln q+o(1)={1 sobre 2}ln(a/b)+ln 2+o(1).} It follows that the sum of this rearranged series is {estilo de exibição {1 sobre 2}ln(a/b)+ln 2=ln left(2{quadrado {a/b}}certo).} Suppose now that, De forma geral, a rearranged series of the alternating harmonic series is organized in such a way that the ratio pn/qn between the number of positive and negative terms in the partial sum of order n tends to a positive limit r. Então, the sum of such a rearrangement will be {estilo de exibição ln esquerda(2{quadrado {r}}certo),} and this explains that any real number x can be obtained as sum of a rearranged series of the alternating harmonic series: it suffices to form a rearrangement for which the limit r is equal to e2x/ 4.