Rice–Shapiro theorem

Rice–Shapiro theorem In computability theory, the Rice–Shapiro theorem is a generalization of Rice's theorem, and is named after Henry Gordon Rice and Norman Shapiro.[1] Contenu 1 Déclaration formelle 2 Perspective from effective topology 3 Remarques 4 References Formal statement Let A be a set of partial-recursive unary functions on the domain of natural numbers such that the set {displaystyle Ix(UN):={nmid varphi _{n}dans un}} is recursively enumerable, où {style d'affichage varphi _{n}} denotes the {displaystyle n} -th partial-recursive function in a Gödel numbering.

Then for any unary partial-recursive function {style d'affichage psi } , Nous avons: {displaystyle psi in ALeftrightarrow exists } a finite function {displaystyle theta subseteq psi } tel que {displaystyle theta in A.} In the given statement, a finite function is a function with a finite domain {style d'affichage x_{1},X_{2},...,X_{m}} et {displaystyle theta subseteq psi } means that for every {style d'affichage xin {X_{1},X_{2},...,X_{m}}} it holds that {style d'affichage psi (X)} is defined and equal to {thêta de style d'affichage (X)} .

Perspective from effective topology For any finite unary function {thêta de style d'affichage } on integers, laisser {displaystyle C(thêta )} denote the 'frustum' of all partial-recursive functions that are defined, and agree with {thêta de style d'affichage } , sur {thêta de style d'affichage } 's domain.

Equip the set of all partial-recursive functions with the topology generated by these frusta as base. Note that for every frustum {displaystyle C} , {displaystyle Ix(C)} is recursively enumerable. More generally it holds for every set {style d'affichage A} of partial-recursive functions: {displaystyle Ix(UN)} is recursively enumerable iff {style d'affichage A} is a recursively enumerable union of frusta.

Notes ^ Rogers Jr., Hartley (1987). Theory of Recursive Functions and Effective Computability. Presse du MIT. ISBN 0-262-68052-1. References Cutland, Nigel (1980). Computability: an introduction to recursive function theory. Cambridge University Press.; Théorème 7-2.16. Rogers Jr., Hartley (1987). Theory of Recursive Functions and Effective Computability. Presse du MIT. p. 482. ISBN 0-262-68052-1. Odifreddi, Piergiorgio (1989). Théorie de la récursivité classique. North Holland.

This computing article is a stub. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Theorems in the foundations of mathematicsTheorems in theory of computationComputing stubs

Si vous voulez connaître d'autres articles similaires à Rice–Shapiro theorem vous pouvez visiter la catégorie Computing stubs.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations