# Reynolds transport theorem

Reynolds transport theorem Part of a series of articles about Calculus Fundamental theorem Leibniz integral rule Limits of functionsContinuity Mean value theoremRolle's theorem hide Differential Definitions Derivative (généralisations)Differential infinitesimalof a functiontotal Concepts Differentiation notationSecond derivativeImplicit differentiationLogarithmic differentiationRelated ratesTaylor's theorem Rules and identities SumProductChainPowerQuotientL'Hôpital's ruleInverseGeneral LeibnizFaà di Bruno's formulaReynolds show Integral show Series show Vector show Multivariable show Advanced show Specialized show Miscellaneous vte In differential calculus, the Reynolds transport theorem (also known as the Leibniz–Reynolds transport theorem), or simply the Reynolds theorem, named after Osborne Reynolds (1842–1912), is a three-dimensional generalization of the Leibniz integral rule. It is used to recast time derivatives of integrated quantities and is useful in formulating the basic equations of continuum mechanics.

Consider integrating f = f(X,t) over the time-dependent region Ω(t) that has boundary ∂Ω(t), then taking the derivative with respect to time: {style d'affichage {frac {ré}{dt}}entier _{Oméga (t)}mathbf {F} ,dV.} If we wish to move the derivative within the integral, there are two issues: the time dependence of f, and the introduction of and removal of space from Ω due to its dynamic boundary. Reynolds transport theorem provides the necessary framework.

Contenu 1 Forme générale 2 Form for a material element 3 A special case 3.1 Interpretation and reduction to one dimension 4 Voir également 5 Remarques 6 Références 7 External links General form Reynolds transport theorem can be expressed as follows:[1][2][3] {style d'affichage {frac {ré}{dt}}entier _{Oméga (t)}mathbf {F} ,dV=int _{Oméga (t)}{frac {mathbf partiel {F} }{t partiel}},dV+int _{Oméga partiel (t)}la gauche(mathbf {v} _{b}cdot mathbf {n} droit)mathbf {F} ,dA} in which n(X,t) is the outward-pointing unit normal vector, x is a point in the region and is the variable of integration, dV and dA are volume and surface elements at x, and vb(X,t) is the velocity of the area element (not the flow velocity). The function f may be tensor-, vector- or scalar-valued.[4] Note that the integral on the left hand side is a function solely of time, and so the total derivative has been used.

Form for a material element In continuum mechanics, this theorem is often used for material elements. These are parcels of fluids or solids which no material enters or leaves. If Ω(t) is a material element then there is a velocity function v = v(X,t), and the boundary elements obey {style d'affichage mathbf {v} ^{b}cdot mathbf {n} = mathbf {v} cdot mathbf {n} .} This condition may be substituted to obtain:[5] {style d'affichage {frac {ré}{dt}}la gauche(entier _{Oméga (t)}mathbf {F} ,dVright)=int _{Oméga (t)}{frac {mathbf partiel {F} }{t partiel}},dV+int _{Oméga partiel (t)}(mathbf {v} cdot mathbf {n} )mathbf {F} ,dA.} Proof for a material element Let Ω0 be reference configuration of the region Ω(t). Let the motion and the deformation gradient be given by {style d'affichage mathbf {X} ={symbole gras {varphi }}(mathbf {X} ,t),} {style d'affichage {symbole gras {F}}(mathbf {X} ,t)={symbole gras {nabla }}{symbole gras {varphi }}.} Let J(X,t) = det F(X,t). Définir {style d'affichage {chapeau {mathbf {F} }}(mathbf {X} ,t)= mathbf {F} ({symbole gras {varphi }}(mathbf {X} ,t),t).} Then the integrals in the current and the reference configurations are related by {style d'affichage {commencer{aligné}entier _{Oméga (t)}mathbf {F} (mathbf {X} ,t),dV&=int _{Oméga _{0}}mathbf {F} ({symbole gras {varphi }}(mathbf {X} ,t),t),J(mathbf {X} ,t),dV_{0}\&=int _{Oméga _{0}}{chapeau {mathbf {F} }}(mathbf {X} ,t),J(mathbf {X} ,t),dV_{0}.fin{aligné}}} That this derivation is for a material element is implicit in the time constancy of the reference configuration: it is constant in material coordinates. The time derivative of an integral over a volume is defined as {style d'affichage {frac {ré}{dt}}la gauche(entier _{Oméga (t)}mathbf {F} (mathbf {X} ,t),dVright)=lim _{Delta trightarrow 0}{frac {1}{Delta t}}la gauche(entier _{Oméga (t+Delta t)}mathbf {F} (mathbf {X} ,t+Delta t),dV-int _{Oméga (t)}mathbf {F} (mathbf {X} ,t),dVright).} Converting into integrals over the reference configuration, on a {style d'affichage {frac {ré}{dt}}la gauche(entier _{Oméga (t)}mathbf {F} (mathbf {X} ,t),dVright)=lim _{Delta trightarrow 0}{frac {1}{Delta t}}la gauche(entier _{Oméga _{0}}{chapeau {mathbf {F} }}(mathbf {X} ,t+Delta t),J(mathbf {X} ,t+Delta t),dV_{0}-entier _{Oméga _{0}}{chapeau {mathbf {F} }}(mathbf {X} ,t),J(mathbf {X} ,t),dV_{0}droit).} Since Ω0 is independent of time, Nous avons {style d'affichage {commencer{aligné}{frac {ré}{dt}}la gauche(entier _{Oméga (t)}mathbf {F} (mathbf {X} ,t),dVright)&=int _{Oméga _{0}}la gauche(lim _{Delta trightarrow 0}{frac {{chapeau {mathbf {F} }}(mathbf {X} ,t+Delta t),J(mathbf {X} ,t+Delta t)-{chapeau {mathbf {F} }}(mathbf {X} ,t),J(mathbf {X} ,t)}{Delta t}}droit),dV_{0}\&=int _{Oméga _{0}}{frac {partiel }{t partiel}}la gauche({chapeau {mathbf {F} }}(mathbf {X} ,t),J(mathbf {X} ,t)droit),dV_{0}\&=int _{Oméga _{0}}la gauche({frac {partiel }{t partiel}}{gros (}{chapeau {mathbf {F} }}(mathbf {X} ,t){gros )},J(mathbf {X} ,t)+{chapeau {mathbf {F} }}(mathbf {X} ,t),{frac {partiel }{t partiel}}{gros (}J(mathbf {X} ,t){gros )}droit),dV_{0}.fin{aligné}}} The time derivative of J is given by:[6] {style d'affichage {commencer{aligné}{frac {partial J(mathbf {X} ,t)}{t partiel}}={frac {partiel }{t partiel}}(la {symbole gras {F}})&=(la {symbole gras {F}})({symbole gras {nabla }}cdot mathbf {v} )\&=J(mathbf {X} ,t),{symbole gras {nabla }}cdot mathbf {v} {gros (}{symbole gras {varphi }}(mathbf {X} ,t),t{gros )}\&=J(mathbf {X} ,t),{symbole gras {nabla }}cdot mathbf {v} (mathbf {X} ,t).fin{aligné}}} Par conséquent, {style d'affichage {commencer{aligné}{frac {ré}{dt}}la gauche(entier _{Oméga (t)}mathbf {F} (mathbf {X} ,t),dVright)&=int _{Oméga _{0}}la gauche({frac {partiel }{t partiel}}la gauche({chapeau {mathbf {F} }}(mathbf {X} ,t)droit),J(mathbf {X} ,t)+{chapeau {mathbf {F} }}(mathbf {X} ,t),J(mathbf {X} ,t),{symbole gras {nabla }}cdot mathbf {v} (mathbf {X} ,t)droit),dV_{0}\&=int _{Oméga _{0}}la gauche({frac {partiel }{t partiel}}la gauche({chapeau {mathbf {F} }}(mathbf {X} ,t)droit)+{chapeau {mathbf {F} }}(mathbf {X} ,t),{symbole gras {nabla }}cdot mathbf {v} (mathbf {X} ,t)droit),J(mathbf {X} ,t),dV_{0}\&=int _{Oméga (t)}la gauche({point {mathbf {F} }}(mathbf {X} ,t)+mathbf {F} (mathbf {X} ,t),{symbole gras {nabla }}cdot mathbf {v} (mathbf {X} ,t)droit),dV.end{aligné}}} où {style d'affichage {point {mathbf {F} }}} is the material time derivative of f. The material derivative is given by {style d'affichage {point {mathbf {F} }}(mathbf {X} ,t)={frac {mathbf partiel {F} (mathbf {X} ,t)}{t partiel}}+{gros (}{symbole gras {nabla }}mathbf {F} (mathbf {X} ,t){gros )}cdot mathbf {v} (mathbf {X} ,t).} Par conséquent, {style d'affichage {frac {ré}{dt}}la gauche(entier _{Oméga (t)}mathbf {F} (mathbf {X} ,t),dVright)=int _{Oméga (t)}la gauche({frac {mathbf partiel {F} (mathbf {X} ,t)}{t partiel}}+{gros (}{symbole gras {nabla }}mathbf {F} (mathbf {X} ,t){gros )}cdot mathbf {v} (mathbf {X} ,t)+mathbf {F} (mathbf {X} ,t),{symbole gras {nabla }}cdot mathbf {v} (mathbf {X} ,t)droit),dV,} ou, {style d'affichage {frac {ré}{dt}}la gauche(entier _{Oméga (t)}mathbf {F} ,dVright)=int _{Oméga (t)}la gauche({frac {mathbf partiel {F} }{t partiel}}+{symbole gras {nabla }}mathbf {F} cdot mathbf {v} +mathbf {F} ,{symbole gras {nabla }}cdot mathbf {v} droit),dV.} Using the identity {style d'affichage {symbole gras {nabla }}cdot (mathbf {v} otimes mathbf {w} )= mathbf {v} ({symbole gras {nabla }}cdot mathbf {w} )+{symbole gras {nabla }}mathbf {v} cdot mathbf {w} ,} we then have {style d'affichage {frac {ré}{dt}}la gauche(entier _{Oméga (t)}mathbf {F} ,dVright)=int _{Oméga (t)}la gauche({frac {mathbf partiel {F} }{t partiel}}+{symbole gras {nabla }}cdot (mathbf {F} otimes mathbf {v} )droit),dV.} Using the divergence theorem and the identity (a ⊗ b) · n = (b · n)un, Nous avons {style d'affichage {commencer{aligné}{frac {ré}{dt}}la gauche(entier _{Oméga (t)}mathbf {F} ,dVright)&=int _{Oméga (t)}{frac {mathbf partiel {F} }{t partiel}},dV+int _{Oméga partiel (t)}(mathbf {F} otimes mathbf {v} )cdot mathbf {n} ,dA\&=int _{Oméga (t)}{frac {mathbf partiel {F} }{t partiel}},dV+int _{Oméga partiel (t)}(mathbf {v} cdot mathbf {n} )mathbf {F} ,dA.qquad square end{aligné}}} A special case If we take Ω to be constant with respect to time, then vb = 0 and the identity reduces to {style d'affichage {frac {ré}{dt}}entier _{Oméga }F,dV=int _{Oméga }{frac {f partiel}{t partiel}},dV.} comme prévu. (This simplification is not possible if the flow velocity is incorrectly used in place of the velocity of an area element.) Interpretation and reduction to one dimension The theorem is the higher-dimensional extension of differentiation under the integral sign and reduces to that expression in some cases. Suppose f is independent of y and z, and that Ω(t) is a unit square in the yz-plane and has x limits a(t) and b(t). Then Reynolds transport theorem reduces to {style d'affichage {frac {ré}{dt}}entier _{un(t)}^{b(t)}F(X,t),dx=int _{un(t)}^{b(t)}{frac {f partiel}{t partiel}},dx+{frac {partial b(t)}{t partiel}}F{gros (}b(t),t{gros )}-{frac {partial a(t)}{t partiel}}F{gros (}un(t),t{gros )},,} qui, up to swapping x and t, is the standard expression for differentiation under the integral sign.

See also Mathematics portal Leibniz integral rule – Differentiation under the integral sign formula Notes ^ L. g. Leal, 2007, p. 23. ^ O. Reynolds, 1903, Volume. 3, p. 12–13 ^ J.E. Marsden and A. Tromba, 5e ed. 2003 ^ Yamaguchi, H. (2008). Engineering Fluid Mechanics. Dordrecht: Springer. p. 23. ISBN 978-1-4020-6741-9. ^ Belytschko, T; Liu, O. K; Moran, B. (2000). Nonlinear Finite Elements for Continua and Structures. New York: John Wiley and Sons. ISBN 0-471-98773-5. ^ Gurtin, M. E. (1981). An Introduction to Continuum Mechanics. New York: Presse académique. p. 77. ISBN 0-12-309750-9. References Leal, L. g. (2007). Advanced transport phenomena: fluid mechanics and convective transport processes. la presse de l'Universite de Cambridge. ISBN 978-0-521-84910-4. Marsden, J. E.; Tromba, UN. (2003). Vector Calculus (5e éd.). New York: O. H. Homme libre. ISBN 978-0-7167-4992-9. Reynolds, O. (1903). Papers on Mechanical and Physical Subjects. Volume. 3, The Sub-Mechanics of the Universe. Cambridge: la presse de l'Universite de Cambridge. External links Osborne Reynolds, Collected Papers on Mechanical and Physical Subjects, in three volumes, published circa 1903, now fully and freely available in digital format: Le volume 1, Le volume 2, Le volume 3, "Module 6 - Reynolds Transport Theorem". ME6601: Introduction to Fluid Mechanics. Georgia Tech. Archived from the original on March 27, 2008. http://planetmath.org/reynoldstransporttheorem Categories: AerodynamicsChemical engineeringContinuum mechanicsEquations of fluid dynamicsFluid dynamicsFluid mechanicsMechanical engineering

Si vous voulez connaître d'autres articles similaires à Reynolds transport theorem vous pouvez visiter la catégorie Aerodynamics.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations