Reynolds transport theorem

Reynolds transport theorem Part of a series of articles about Calculus Fundamental theorem Leibniz integral rule Limits of functionsContinuity Mean value theoremRolle's theorem hide Differential Definitions Derivative (generalizations)Differential infinitesimalof a functiontotal Concepts Differentiation notationSecond derivativeImplicit differentiationLogarithmic differentiationRelated ratesTaylor's theorem Rules and identities SumProductChainPowerQuotientL'Hôpital's ruleInverseGeneral LeibnizFaà di Bruno's formulaReynolds show Integral show Series show Vector show Multivariable show Advanced show Specialized show Miscellaneous vte In differential calculus, the Reynolds transport theorem (also known as the Leibniz–Reynolds transport theorem), or simply the Reynolds theorem, named after Osborne Reynolds (1842–1912), is a three-dimensional generalization of the Leibniz integral rule. It is used to recast time derivatives of integrated quantities and is useful in formulating the basic equations of continuum mechanics.
Consider integrating f = f(x,t) over the time-dependent region Ω(t) that has boundary ∂Ω(t), then taking the derivative with respect to time: {displaystyle {frac {d}{dt}}int _{Omega (t)}mathbf {f} ,dV.} If we wish to move the derivative within the integral, there are two issues: the time dependence of f, and the introduction of and removal of space from Ω due to its dynamic boundary. Reynolds transport theorem provides the necessary framework.
Contents 1 General form 2 Form for a material element 3 A special case 3.1 Interpretation and reduction to one dimension 4 See also 5 Notes 6 References 7 External links General form Reynolds transport theorem can be expressed as follows:[1][2][3] {displaystyle {frac {d}{dt}}int _{Omega (t)}mathbf {f} ,dV=int _{Omega (t)}{frac {partial mathbf {f} }{partial t}},dV+int _{partial Omega (t)}left(mathbf {v} _{b}cdot mathbf {n} right)mathbf {f} ,dA} in which n(x,t) is the outward-pointing unit normal vector, x is a point in the region and is the variable of integration, dV and dA are volume and surface elements at x, and vb(x,t) is the velocity of the area element (not the flow velocity). The function f may be tensor-, vector- or scalar-valued.[4] Note that the integral on the left hand side is a function solely of time, and so the total derivative has been used.
Form for a material element In continuum mechanics, this theorem is often used for material elements. These are parcels of fluids or solids which no material enters or leaves. If Ω(t) is a material element then there is a velocity function v = v(x,t), and the boundary elements obey {displaystyle mathbf {v} ^{b}cdot mathbf {n} =mathbf {v} cdot mathbf {n} .} This condition may be substituted to obtain:[5] {displaystyle {frac {d}{dt}}left(int _{Omega (t)}mathbf {f} ,dVright)=int _{Omega (t)}{frac {partial mathbf {f} }{partial t}},dV+int _{partial Omega (t)}(mathbf {v} cdot mathbf {n} )mathbf {f} ,dA.} Proof for a material element Let Ω0 be reference configuration of the region Ω(t). Let the motion and the deformation gradient be given by {displaystyle mathbf {x} ={boldsymbol {varphi }}(mathbf {X} ,t),} {displaystyle {boldsymbol {F}}(mathbf {X} ,t)={boldsymbol {nabla }}{boldsymbol {varphi }}.} Let J(X,t) = det F(X,t). Define {displaystyle {hat {mathbf {f} }}(mathbf {X} ,t)=mathbf {f} ({boldsymbol {varphi }}(mathbf {X} ,t),t).} Then the integrals in the current and the reference configurations are related by {displaystyle {begin{aligned}int _{Omega (t)}mathbf {f} (mathbf {x} ,t),dV&=int _{Omega _{0}}mathbf {f} ({boldsymbol {varphi }}(mathbf {X} ,t),t),J(mathbf {X} ,t),dV_{0}\&=int _{Omega _{0}}{hat {mathbf {f} }}(mathbf {X} ,t),J(mathbf {X} ,t),dV_{0}.end{aligned}}} That this derivation is for a material element is implicit in the time constancy of the reference configuration: it is constant in material coordinates. The time derivative of an integral over a volume is defined as {displaystyle {frac {d}{dt}}left(int _{Omega (t)}mathbf {f} (mathbf {x} ,t),dVright)=lim _{Delta trightarrow 0}{frac {1}{Delta t}}left(int _{Omega (t+Delta t)}mathbf {f} (mathbf {x} ,t+Delta t),dV-int _{Omega (t)}mathbf {f} (mathbf {x} ,t),dVright).} Converting into integrals over the reference configuration, we get {displaystyle {frac {d}{dt}}left(int _{Omega (t)}mathbf {f} (mathbf {x} ,t),dVright)=lim _{Delta trightarrow 0}{frac {1}{Delta t}}left(int _{Omega _{0}}{hat {mathbf {f} }}(mathbf {X} ,t+Delta t),J(mathbf {X} ,t+Delta t),dV_{0}-int _{Omega _{0}}{hat {mathbf {f} }}(mathbf {X} ,t),J(mathbf {X} ,t),dV_{0}right).} Since Ω0 is independent of time, we have {displaystyle {begin{aligned}{frac {d}{dt}}left(int _{Omega (t)}mathbf {f} (mathbf {x} ,t),dVright)&=int _{Omega _{0}}left(lim _{Delta trightarrow 0}{frac {{hat {mathbf {f} }}(mathbf {X} ,t+Delta t),J(mathbf {X} ,t+Delta t)-{hat {mathbf {f} }}(mathbf {X} ,t),J(mathbf {X} ,t)}{Delta t}}right),dV_{0}\&=int _{Omega _{0}}{frac {partial }{partial t}}left({hat {mathbf {f} }}(mathbf {X} ,t),J(mathbf {X} ,t)right),dV_{0}\&=int _{Omega _{0}}left({frac {partial }{partial t}}{big (}{hat {mathbf {f} }}(mathbf {X} ,t){big )},J(mathbf {X} ,t)+{hat {mathbf {f} }}(mathbf {X} ,t),{frac {partial }{partial t}}{big (}J(mathbf {X} ,t){big )}right),dV_{0}.end{aligned}}} The time derivative of J is given by:[6] {displaystyle {begin{aligned}{frac {partial J(mathbf {X} ,t)}{partial t}}={frac {partial }{partial t}}(det {boldsymbol {F}})&=(det {boldsymbol {F}})({boldsymbol {nabla }}cdot mathbf {v} )\&=J(mathbf {X} ,t),{boldsymbol {nabla }}cdot mathbf {v} {big (}{boldsymbol {varphi }}(mathbf {X} ,t),t{big )}\&=J(mathbf {X} ,t),{boldsymbol {nabla }}cdot mathbf {v} (mathbf {x} ,t).end{aligned}}} Therefore, {displaystyle {begin{aligned}{frac {d}{dt}}left(int _{Omega (t)}mathbf {f} (mathbf {x} ,t),dVright)&=int _{Omega _{0}}left({frac {partial }{partial t}}left({hat {mathbf {f} }}(mathbf {X} ,t)right),J(mathbf {X} ,t)+{hat {mathbf {f} }}(mathbf {X} ,t),J(mathbf {X} ,t),{boldsymbol {nabla }}cdot mathbf {v} (mathbf {x} ,t)right),dV_{0}\&=int _{Omega _{0}}left({frac {partial }{partial t}}left({hat {mathbf {f} }}(mathbf {X} ,t)right)+{hat {mathbf {f} }}(mathbf {X} ,t),{boldsymbol {nabla }}cdot mathbf {v} (mathbf {x} ,t)right),J(mathbf {X} ,t),dV_{0}\&=int _{Omega (t)}left({dot {mathbf {f} }}(mathbf {x} ,t)+mathbf {f} (mathbf {x} ,t),{boldsymbol {nabla }}cdot mathbf {v} (mathbf {x} ,t)right),dV.end{aligned}}} where {displaystyle {dot {mathbf {f} }}} is the material time derivative of f. The material derivative is given by {displaystyle {dot {mathbf {f} }}(mathbf {x} ,t)={frac {partial mathbf {f} (mathbf {x} ,t)}{partial t}}+{big (}{boldsymbol {nabla }}mathbf {f} (mathbf {x} ,t){big )}cdot mathbf {v} (mathbf {x} ,t).} Therefore, {displaystyle {frac {d}{dt}}left(int _{Omega (t)}mathbf {f} (mathbf {x} ,t),dVright)=int _{Omega (t)}left({frac {partial mathbf {f} (mathbf {x} ,t)}{partial t}}+{big (}{boldsymbol {nabla }}mathbf {f} (mathbf {x} ,t){big )}cdot mathbf {v} (mathbf {x} ,t)+mathbf {f} (mathbf {x} ,t),{boldsymbol {nabla }}cdot mathbf {v} (mathbf {x} ,t)right),dV,} or, {displaystyle {frac {d}{dt}}left(int _{Omega (t)}mathbf {f} ,dVright)=int _{Omega (t)}left({frac {partial mathbf {f} }{partial t}}+{boldsymbol {nabla }}mathbf {f} cdot mathbf {v} +mathbf {f} ,{boldsymbol {nabla }}cdot mathbf {v} right),dV.} Using the identity {displaystyle {boldsymbol {nabla }}cdot (mathbf {v} otimes mathbf {w} )=mathbf {v} ({boldsymbol {nabla }}cdot mathbf {w} )+{boldsymbol {nabla }}mathbf {v} cdot mathbf {w} ,} we then have {displaystyle {frac {d}{dt}}left(int _{Omega (t)}mathbf {f} ,dVright)=int _{Omega (t)}left({frac {partial mathbf {f} }{partial t}}+{boldsymbol {nabla }}cdot (mathbf {f} otimes mathbf {v} )right),dV.} Using the divergence theorem and the identity (a ⊗ b) · n = (b · n)a, we have {displaystyle {begin{aligned}{frac {d}{dt}}left(int _{Omega (t)}mathbf {f} ,dVright)&=int _{Omega (t)}{frac {partial mathbf {f} }{partial t}},dV+int _{partial Omega (t)}(mathbf {f} otimes mathbf {v} )cdot mathbf {n} ,dA\&=int _{Omega (t)}{frac {partial mathbf {f} }{partial t}},dV+int _{partial Omega (t)}(mathbf {v} cdot mathbf {n} )mathbf {f} ,dA.qquad square end{aligned}}} A special case If we take Ω to be constant with respect to time, then vb = 0 and the identity reduces to {displaystyle {frac {d}{dt}}int _{Omega }f,dV=int _{Omega }{frac {partial f}{partial t}},dV.} as expected. (This simplification is not possible if the flow velocity is incorrectly used in place of the velocity of an area element.) Interpretation and reduction to one dimension The theorem is the higher-dimensional extension of differentiation under the integral sign and reduces to that expression in some cases. Suppose f is independent of y and z, and that Ω(t) is a unit square in the yz-plane and has x limits a(t) and b(t). Then Reynolds transport theorem reduces to {displaystyle {frac {d}{dt}}int _{a(t)}^{b(t)}f(x,t),dx=int _{a(t)}^{b(t)}{frac {partial f}{partial t}},dx+{frac {partial b(t)}{partial t}}f{big (}b(t),t{big )}-{frac {partial a(t)}{partial t}}f{big (}a(t),t{big )},,} which, up to swapping x and t, is the standard expression for differentiation under the integral sign.
See also Mathematics portal Leibniz integral rule – Differentiation under the integral sign formula Notes ^ L. G. Leal, 2007, p. 23. ^ O. Reynolds, 1903, Vol. 3, p. 12–13 ^ J.E. Marsden and A. Tromba, 5th ed. 2003 ^ Yamaguchi, H. (2008). Engineering Fluid Mechanics. Dordrecht: Springer. p. 23. ISBN 978-1-4020-6741-9. ^ Belytschko, T.; Liu, W. K.; Moran, B. (2000). Nonlinear Finite Elements for Continua and Structures. New York: John Wiley and Sons. ISBN 0-471-98773-5. ^ Gurtin, M. E. (1981). An Introduction to Continuum Mechanics. New York: Academic Press. p. 77. ISBN 0-12-309750-9. References Leal, L. G. (2007). Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press. ISBN 978-0-521-84910-4. Marsden, J. E.; Tromba, A. (2003). Vector Calculus (5th ed.). New York: W. H. Freeman. ISBN 978-0-7167-4992-9. Reynolds, O. (1903). Papers on Mechanical and Physical Subjects. Vol. 3, The Sub-Mechanics of the Universe. Cambridge: Cambridge University Press. External links Osborne Reynolds, Collected Papers on Mechanical and Physical Subjects, in three volumes, published circa 1903, now fully and freely available in digital format: Volume 1, Volume 2, Volume 3, "Module 6 - Reynolds Transport Theorem". ME6601: Introduction to Fluid Mechanics. Georgia Tech. Archived from the original on March 27, 2008. http://planetmath.org/reynoldstransporttheorem Categories: AerodynamicsChemical engineeringContinuum mechanicsEquations of fluid dynamicsFluid dynamicsFluid mechanicsMechanical engineering
Si quieres conocer otros artículos parecidos a Reynolds transport theorem puedes visitar la categoría Aerodynamics.
Deja una respuesta