Reversed compound agent theorem

Reversed compound agent theorem "Rcat" redirige ici. For the usage of redirect categories on Wikipedia, see WP:RCAT.

En théorie des probabilités, the reversed compound agent theorem (RCAT) is a set of sufficient conditions for a stochastic process expressed in any formalism to have a product form stationary distribution[1] (assuming that the process is stationary[2][1]). The theorem shows that product form solutions in Jackson's theorem,[1] the BCMP theorem[3] and G-networks are based on the same fundamental mechanisms.[4] The theorem identifies a reversed process using Kelly's lemma, from which the stationary distribution can be computed.[1] Références ^ Aller à: a b c d Harrison, P. g. (2003). "Turning back time in Markovian process algebra". Informatique théorique. 290 (3): 1947–2013. est ce que je:10.1016/S0304-3975(02)00375-4. ^ Harrison, P. g. (2006). "Process Algebraic Non-product-forms" (PDF). Electronic Notes in Theoretical Computer Science. 151 (3): 61–06. est ce que je:10.1016/j.entcs.2006.03.012. ^ Harrison, P. g. (2004). "Reversed processes, product forms and a non-product form". Algèbre linéaire et ses applications. 386: 359–381. est ce que je:10.1016/j.laa.2004.02.020. ^ Hillston, J. (2005). "Process Algebras for Quantitative Analysis" (PDF). 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05). pp. 239–248. est ce que je:10.1109/LICS.2005.35. ISBN 0-7695-2266-1. External links RCAT: From PEPA to Product form a short introduction to RCAT This probability-related article is a stub. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Probability theoremsProbability stubs

Si vous voulez connaître d'autres articles similaires à Reversed compound agent theorem vous pouvez visiter la catégorie Probability stubs.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations