# Reversed compound agent theorem

Reversed compound agent theorem "Rcat" leitet hier weiter. For the usage of redirect categories on Wikipedia, see WP:RCAT.

In der Wahrscheinlichkeitstheorie, the reversed compound agent theorem (RCAT) is a set of sufficient conditions for a stochastic process expressed in any formalism to have a product form stationary distribution[1] (assuming that the process is stationary[2][1]). The theorem shows that product form solutions in Jackson's theorem,[1] the BCMP theorem[3] and G-networks are based on the same fundamental mechanisms.[4] The theorem identifies a reversed process using Kelly's lemma, from which the stationary distribution can be computed.[1] Referenzen ^ Hochspringen zu: a b c d Harrison, P. G. (2003). "Turning back time in Markovian process algebra". Theoretical Computer Science. 290 (3): 1947–2013. doi:10.1016/S0304-3975(02)00375-4. ^ Harrison, P. G. (2006). "Process Algebraic Non-product-forms" (Pdf). Electronic Notes in Theoretical Computer Science. 151 (3): 61–06. doi:10.1016/j.entcs.2006.03.012. ^ Harrison, P. G. (2004). "Reversed processes, product forms and a non-product form". Lineare Algebra und ihre Anwendungen. 386: 359–381. doi:10.1016/j.laa.2004.02.020. ^ Hillston, J. (2005). "Process Algebras for Quantitative Analysis" (Pdf). 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05). pp. 239–248. doi:10.1109/LICS.2005.35. ISBN 0-7695-2266-1. External links RCAT: From PEPA to Product form a short introduction to RCAT This probability-related article is a stub. Sie können Wikipedia helfen, indem Sie es erweitern.

Kategorien: Probability theoremsProbability stubs

Wenn Sie andere ähnliche Artikel wissen möchten Reversed compound agent theorem Sie können die Kategorie besuchen Probability stubs.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen