Reuschle's theorem

Reuschle's theorem Reuschle's theorem: cevians {displaystyle AP_{a}} , {displaystyle AP_{b}} et {displaystyle AP_{c}} intersect in {displaystyle D} {displunystyle AP'_{a}} , {displaystyle AP'_{b}} et {displaystyle AP'_{c}} intersect in {displaystyle D'} In elementary geometry, Reuschle's theorem describes a property of the cevians of a triangle intersecting in a common point and is named after the German mathematician Karl Gustav Reuschle (1812–1875). It is also known as Terquem's theorem after the French mathematician Olry Terquem (1782–1862), who published it in 1842.
In a triangle {style d'affichage ABC} with its three cevians intersecting in a common point other than the vertices {style d'affichage A} , {style d'affichage B} ou {displaystyle C} laisser {style d'affichage P_{un}} , {style d'affichage P_{b}} et {style d'affichage P_{c}} denote the intersections of the (extended) triangle sides and the cevians. The circle defined by the three points {style d'affichage P_{un}} , {style d'affichage P_{b}} et {style d'affichage P_{c}} intersects the (extended) triangle sides in the (Additionnel) points {displunystyle P'_{a}} , {displaystyle P'_{b}} et {displaystyle P'_{c}} . Reuschle's theorem now stuntes that the three new cevians {displaystyle AP'_{a}} , {displaystyle BP'_{b}} et {displaystyle CP'_{c}} intersect in a common point as well.
References Friedrich Riecke (éd.): Mathematische Unterhaltungen. Tome I, Stuttgart 1867, (reprint Wiesbaden 1973), ISBN 3-500-26010-1, p. 125 (Allemand) M. ré. Renard, J. R. Goggins: ">
Catégories: Elementary geometryTheorems about triangles and circlesElementary geometry stubs
Si vous voulez connaître d'autres articles similaires à Reuschle's theorem vous pouvez visiter la catégorie Elementary geometry.
Laisser un commentaire