# Reuschle's theorem

Reuschle's theorem Reuschle's theorem: cevians {displaystyle AP_{a}} , {displaystyle AP_{b}} und {displaystyle AP_{c}} intersect in {Anzeigestil D} {displaystyle AP'_{a}} , {displaystyle AP'_{b}} und {displaystyle AP'_{c}} intersect in {displaystyle D'} In elementary geometry, Reuschle's theorem describes a property of the cevians of a triangle intersecting in a common point and is named after the German mathematician Karl Gustav Reuschle (1812–1875). It is also known as Terquem's theorem after the French mathematician Olry Terquem (1782–1862), who published it in 1842.

In a triangle {Display-ABC} with its three cevians intersecting in a common point other than the vertices {Anzeigestil A} , {Anzeigestil B} oder {Anzeigestil C} Lassen {Anzeigestil P_{a}} , {Anzeigestil P_{b}} und {Anzeigestil P_{c}} denote the intersections of the (extended) triangle sides and the cevians. The circle defined by the three points {Anzeigestil P_{a}} , {Anzeigestil P_{b}} und {Anzeigestil P_{c}} intersects the (extended) triangle sides in the (zusätzlich) Punkte {displaystyle P'_{a}} , {displaystyle P'_{b}} und {displaystyle P'_{c}} . Reuschle's theorem now states that the three new cevians {displaystyle AP'_{a}} , {displaystyle BP'_{b}} und {displaystyle CP'_{c}} intersect in a common point as well.

References Friedrich Riecke (ed.): Mathematische Unterhaltungen. Band I, Stuttgart 1867, (reprint Wiesbaden 1973), ISBN 3-500-26010-1, p. 125 (Deutsch) M. D. Fuchs, J. R. Goggins: ">

Kategorien: Elementary geometryTheorems about triangles and circlesElementary geometry stubs

Wenn Sie andere ähnliche Artikel wissen möchten Reuschle's theorem Sie können die Kategorie besuchen Elementary geometry.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen