Residue theorem

Residue theorem Mathematical analysis → Complex analysis Complex analysis Complex numbers Real numberImaginary numberComplex planeComplex conjugateUnit complex number Complex functions Complex-valued functionAnalytic functionHolomorphic functionCauchy–Riemann equationsFormal power series Basic Theory Zeros and polesCauchy's integral theoremLocal primitiveCauchy's integral formulaWinding numberLaurent seriesIsolated singularityResidue theoremConformal mapSchwarz lemmaHarmonic functionLaplace's equation Geometric function theory People Augustin-Louis CauchyLeonhard EulerCarl Friedrich GaussJacques HadamardKiyoshi OkaBernhard RiemannKarl Weierstrass Mathematics portal vte In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. From a geometrical perspective, it can be seen as a special case of the generalized Stokes' theorem.

Contenu 1 Déclaration 2 Exemples 2.1 An integral along the real axis 2.2 An infinite sum 3 Voir également 4 Remarques 5 Références 6 External links Statement The statement is as follows: Illustration of the setting.

Let U be a simply connected open subset of the complex plane containing a finite list of points a1, ..., un, U0 = U {a1, …, un}, and a function f defined and holomorphic on U0. Let γ be a closed rectifiable curve in U0, and denote the winding number of γ around ak by I(c, et). The line integral of f around γ is equal to 2πi times the sum of residues of f at the points, each counted as many times as γ winds around the point: {displaystyle oint _{gamma }F(z),dz=2pi isum _{k=1}^{n}nom de l'opérateur {je} (gamma ,un_{k})nom de l'opérateur {Res} (F,un_{k}).} If γ is a positively oriented simple closed curve, je(c, et) = 1 if ak is in the interior of γ, et 0 if not, Donc {displaystyle oint _{gamma }F(z),dz=2pi isum operatorname {Res} (F,un_{k})} with the sum over those ak inside γ.[1] The relationship of the residue theorem to Stokes' theorem is given by the Jordan curve theorem. The general plane curve γ must first be reduced to a set of simple closed curves {γi} whose total is equivalent to γ for integration purposes; this reduces the problem to finding the integral of f dz along a Jordan curve γi with interior V. The requirement that f be holomorphic on U0 = U {et} is equivalent to the statement that the exterior derivative d(f dz) = 0 on U0. Thus if two planar regions V and W of U enclose the same subset {aj} de {et}, the regions V W and W V lie entirely in U0, et donc {style d'affichage entier _{Vsetminus W}ré(F,dz)-entier _{Wsetminus V}ré(F,dz)} is well-defined and equal to zero. Par conséquent, the contour integral of f dz along γj = ∂V is equal to the sum of a set of integrals along paths λj, each enclosing an arbitrarily small region around a single aj — the residues of f (up to the conventional factor 2πi) à {aj}. Summing over {γj}, we recover the final expression of the contour integral in terms of the winding numbers {je(c, et)}.

In order to evaluate real integrals, the residue theorem is used in the following manner: the integrand is extended to the complex plane and its residues are computed (which is usually easy), and a part of the real axis is extended to a closed curve by attaching a half-circle in the upper or lower half-plane, forming a semicircle. The integral over this curve can then be computed using the residue theorem. Souvent, the half-circle part of the integral will tend towards zero as the radius of the half-circle grows, leaving only the real-axis part of the integral, the one we were originally interested in.

Examples An integral along the real axis The integral {style d'affichage entier _{-infime }^{infime }{frac {e ^{çax}}{x^{2}+1}},dx} The contour C.

arises in probability theory when calculating the characteristic function of the Cauchy distribution. It resists the techniques of elementary calculus but can be evaluated by expressing it as a limit of contour integrals.

Suppose t > 0 and define the contour C that goes along the real line from −a to a and then counterclockwise along a semicircle centered at 0 from a to −a. Take a to be greater than 1, so that the imaginary unit i is enclosed within the curve. Now consider the contour integral {style d'affichage entier _{C}{F(z)},dz=int _{C}{frac {e ^{itz}}{z ^{2}+1}},dz.} Since eitz is an entire function (having no singularities at any point in the complex plane), this function has singularities only where the denominator z2 + 1 est zéro. Since z2 + 1 = (z + je)(z − i), that happens only where z = i or z = −i. Only one of those points is in the region bounded by this contour. Because f(z) est {style d'affichage {commencer{aligné}{frac {e ^{itz}}{z ^{2}+1}}&={frac {e ^{itz}}{2je}}la gauche({frac {1}{z-i}}-{frac {1}{z+i}}droit)\&={frac {e ^{itz}}{2je(z-i)}}-{frac {e ^{itz}}{2je(z+i)}},fin{aligné}}} the residue of f(z) at z = i is {nom de l'opérateur de style d'affichage {Res} _{z=i}F(z)={frac {e ^{-t}}{2je}}.} According to the residue theorem, alors, Nous avons {style d'affichage entier _{C}F(z),dz=2pi icdot operatorname {Res} limits _{z=i}F(z)=2pi i{frac {e ^{-t}}{2je}}=pi e^{-t}.} The contour C may be split into a straight part and a curved arc, pour que {style d'affichage entier _{mathrm {straight} }F(z),dz+int _{mathrm {arc} }F(z),dz=pi e^{-t}} Et ainsi {style d'affichage entier _{-un}^{un}F(z),dz=pi e^{-t}-entier _{mathrm {arc} }F(z),dz.} Using some estimations, Nous avons {style d'affichage à gauche|entier _{mathrm {arc} }{frac {e ^{itz}}{z ^{2}+1}},dzright|leq pi acdot sup _{texte{arc}}la gauche|{frac {e ^{itz}}{z ^{2}+1}}droit|leq pi acdot sup _{texte{arc}}{frac {1}{|z ^{2}+1|}}leq {frac {pi a}{un ^{2}-1}},} et {style d'affichage lim _{ato infty }{frac {pi a}{un ^{2}-1}}=0.} The estimate on the numerator follows since t > 0, and for complex numbers z along the arc (which lies in the upper half-plane), the argument φ of z lies between 0 and π. Alors, {style d'affichage à gauche|e ^{itz}droit|=gauche|e ^{it|z|(cos varphi +isin varphi )}droit|=gauche|e ^{-t|z|sin varphi +it|z|cos varphi }droit|=e^{-t|z|sin varphi }leq 1.} Par conséquent, {style d'affichage entier _{-infime }^{infime }{frac {e ^{itz}}{z ^{2}+1}},dz=pi e^{-t}.} If t < 0 then a similar argument with an arc C′ that winds around −i rather than i shows that The contour C′. {displaystyle int _{-infty }^{infty }{frac {e^{itz}}{z^{2}+1}},dz=pi e^{t},} and finally we have {displaystyle int _{-infty }^{infty }{frac {e^{itz}}{z^{2}+1}},dz=pi e^{-left|tright|}.} (If t = 0 then the integral yields immediately to elementary calculus methods and its value is π.) An infinite sum The fact that π cot(πz) has simple poles with residue 1 at each integer can be used to compute the sum {displaystyle sum _{n=-infty }^{infty }f(n).} Consider, for example, f(z) = z−2. Let ΓN be the rectangle that is the boundary of [−N − 1 / 2 , N + 1 / 2 ]2 with positive orientation, with an integer N. By the residue formula, {displaystyle {frac {1}{2pi i}}int _{Gamma _{N}}f(z)pi cot(pi z),dz=operatorname {Res} limits _{z=0}+sum _{n=-N atop nneq 0}^{N}n^{-2}.} The left-hand side goes to zero as N → ∞ since the integrand has order {displaystyle O(n^{-2})} . On the other hand,[2] {displaystyle {frac {z}{2}}cot left({frac {z}{2}}right)=1-B_{2}{frac {z^{2}}{2!}}+cdots } where the Bernoulli number {displaystyle B_{2}={frac {1}{6}}.} (In fact, z / 2 cot( z / 2 ) = iz / 1 − e−iz − iz / 2 .) Thus, the residue Resz=0 is − π2 / 3 . We conclude: {displaystyle sum _{n=1}^{infty }{frac {1}{n^{2}}}={frac {pi ^{2}}{6}}} which is a proof of the Basel problem. The same trick can be used to establish the sum of the Eisenstein series: {displaystyle pi cot(pi z)=lim _{Nto infty }sum _{n=-N}^{N}(z-n)^{-1}.} We take f(z) = (w − z)−1 with w a non-integer and we shall show the above for w. The difficulty in this case is to show the vanishing of the contour integral at infinity. We have: {displaystyle int _{Gamma _{N}}{frac {pi cot(pi z)}{z}},dz=0} since the integrand is an even function and so the contributions from the contour in the left-half plane and the contour in the right cancel each other out. Thus, {displaystyle int _{Gamma _{N}}f(z)pi cot(pi z),dz=int _{Gamma _{N}}left({frac {1}{w-z}}+{frac {1}{z}}right)pi cot(pi z),dz} goes to zero as N → ∞. See also Cauchy's integral formula Glasser's master theorem Jordan's lemma Methods of contour integration Morera's theorem Nachbin's theorem Residue at infinity Logarithmic form Notes ^ Whittaker & Watson 1920, p. 112, §6.1. ^ Whittaker & Watson 1920, p. 125, §7.2. Note that the Bernoulli number {displaystyle B_{2n}} is denoted by {displaystyle B_{n}} in Whittaker & Watson's book. References Ahlfors, Lars (1979). Complex Analysis. McGraw Hill. ISBN 0-07-085008-9. Lindelöf, Ernst L. (1905). Le calcul des résidus et ses applications à la théorie des fonctions (in French). Editions Jacques Gabay (published 1989). ISBN 2-87647-060-8. Mitrinović, Dragoslav; Kečkić, Jovan (1984). The Cauchy method of residues: Theory and applications. D. Reidel Publishing Company. ISBN 90-277-1623-4. Whittaker, E. T.; Watson, G. N. (1920). A Course of Modern Analysis (3rd ed.). Cambridge University Press. External links "Cauchy integral theorem", Encyclopedia of Mathematics, EMS Press, 2001 [1994] Residue theorem in MathWorld Categories: Theorems in complex analysisAnalytic functions

Si vous voulez connaître d'autres articles similaires à Residue theorem vous pouvez visiter la catégorie Analytic functions.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations