# Reider's theorem

Reider's theorem In algebraic geometry, Reider's theorem gives conditions for a line bundle on a projective surface to be very ample.

Statement Let D be a nef divisor on a smooth projective surface X. Denote by KX the canonical divisor of X.

If D2 > 4, then the linear system |KX+D| has no base points unless there exists a nonzero effective divisor E such that {displaystyle DE=0,E^{2}=-1} , oder {displaystyle DE=1,E^{2}=0} ; If D2 > 8, then the linear system |KX+D| is very ample unless there exists a nonzero effective divisor E satisfying one of the following: {displaystyle DE=0,E^{2}=-1} oder {Anzeigestil -2} ; {displaystyle DE=1,E^{2}=0} oder {Anzeigestil -1} ; {displaystyle DE=2,E^{2}=0} ; {displaystyle DE=3,D=3E,E^{2}=1} Applications Reider's theorem implies the surface case of the Fujita conjecture. Let L be an ample line bundle on a smooth projective surface X. If m > 2, then for D=mL we have D2 = m2 L2 ≥ m2 > 4; for any effective divisor E the ampleness of L implies D · E = m(L · E) ≥ m > 2.

Thus by the first part of Reider's theorem |KX+mL| is base-point-free. Ähnlich, for any m > 3 the linear system |KX+mL| is very ample.

References Reider, Igor (1988), "Vector bundles of rank 2 and linear systems on algebraic surfaces", Annalen der Mathematik, Zweite Serie, Annalen der Mathematik, 127 (2): 309–316, doi:10.2307/2007055, ISSN 0003-486X, JSTOR 2007055, HERR 0932299 This algebraic geometry–related article is a stub. Sie können Wikipedia helfen, indem Sie es erweitern.

Kategorien: Algebraic surfacesTheorems in algebraic geometryAlgebraic geometry stubs

Wenn Sie andere ähnliche Artikel wissen möchten Reider's theorem Sie können die Kategorie besuchen Algebraic geometry stubs.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen