Raikov's theorem

Raikov's theorem Raikov’s theorem, named for Russian mathematician Dmitrii Abramovich Raikov, is a result in probability theory. It is well known that if each of two independent random variables ξ1 and ξ2 has a Poisson distribution, then their sum ξ=ξ1+ξ2 has a Poisson distribution as well. It turns out that the converse is also valid.[1][2][3] Contenu 1 Énoncé du théorème 2 Commentaire 3 An extension to locally compact Abelian groups 4 Raikov's theorem on locally compact Abelian groups 5 References Statement of the theorem Suppose that a random variable ξ has Poisson's distribution and admits a decomposition as a sum ξ=ξ1+ξ2 of two independent random variables. Then the distribution of each summand is a shifted Poisson's distribution.

Comment Raikov's theorem is similar to Cramér’s decomposition theorem. The latter result claims that if a sum of two independent random variables has normal distribution, then each summand is normally distributed as well. It was also proved by Yu.V.Linnik that a convolution of normal distribution and Poisson's distribution possesses a similar property (Linnik's theorem [ru]).

An extension to locally compact Abelian groups Let {style d'affichage X} be a locally compact Abelian group. Denote by {displaystyle M^{1}(X)} the convolution semigroup of probability distributions on {style d'affichage X} , and by {style d'affichage E_{X}} the degenerate distribution concentrated at {style d'affichage xin X} . Laisser {style d'affichage x_{0}en X,lambda >0} .

The Poisson distribution generated by the measure {displaystyle lambda E_{X_{0}}} is defined as a shifted distribution of the form {displaystyle mu =e(lambda E_{X_{0}})=e^{-lambda }(E_{0}+lambda E_{X_{0}}+lambda ^{2}E_{2X_{0}}/2!+ldots +lambda ^{n}E_{nx_{0}}/n!+ldots ).} One has the following Raikov's theorem on locally compact Abelian groups Let {style d'affichage lui } be the Poisson distribution generated by the measure {displaystyle lambda E_{X_{0}}} . Supposer que {displaystyle mu =mu _{1}*dans _{2}} , avec {style d'affichage lui _{j}in M^{1}(X)} . Si {style d'affichage x_{0}} is either an infinite order element, or has order 2, alors {style d'affichage lui _{j}} is also a Poisson's distribution. In the case of {style d'affichage x_{0}} being an element of finite order {displaystyle nneq 2} , {style d'affichage lui _{j}} can fail to be a Poisson's distribution.

References ^ D. Raikov (1937). "On the decomposition of Poisson laws". Dokl. Acad. SCI. URSS. 14: 9–11. ^ Rukhin A. L. (1970). "Certain statistical and probability problems on groups". Trudy Mat. Inst.. Steklov. 111: 52–109. ^ Linnik, Yu. V, Ostrovskii, je. V. (1977). Decomposition of random variables and vectors. Providence, R. JE.: Traductions de monographies mathématiques, 48. Société mathématique américaine. Catégories: Characterization of probability distributionsProbability theoremsTheorems in statistics

Si vous voulez connaître d'autres articles similaires à Raikov's theorem vous pouvez visiter la catégorie Characterization of probability distributions.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations