# Raikov's theorem

Raikov's theorem Raikov’s theorem, named for Russian mathematician Dmitrii Abramovich Raikov, is a result in probability theory. It is well known that if each of two independent random variables ξ1 and ξ2 has a Poisson distribution, then their sum ξ=ξ1+ξ2 has a Poisson distribution as well. It turns out that the converse is also valid.[1][2][3] Inhalt 1 Aussage des Theorems 2 Kommentar 3 An extension to locally compact Abelian groups 4 Raikov's theorem on locally compact Abelian groups 5 References Statement of the theorem Suppose that a random variable ξ has Poisson's distribution and admits a decomposition as a sum ξ=ξ1+ξ2 of two independent random variables. Then the distribution of each summand is a shifted Poisson's distribution.

Comment Raikov's theorem is similar to Cramér’s decomposition theorem. The latter result claims that if a sum of two independent random variables has normal distribution, then each summand is normally distributed as well. It was also proved by Yu.V.Linnik that a convolution of normal distribution and Poisson's distribution possesses a similar property (Linnik's theorem [ru]).

An extension to locally compact Abelian groups Let {Anzeigestil X} be a locally compact Abelian group. Bezeichne mit {displaystyle M^{1}(X)} the convolution semigroup of probability distributions on {Anzeigestil X} , and by {Anzeigestil E_{x}} the degenerate distribution concentrated at {Anzeigestil xin X} . Lassen {Anzeigestil x_{0}in X,lambda >0} .

The Poisson distribution generated by the measure {displaystyle lambda E_{x_{0}}} is defined as a shifted distribution of the form {displaystyle mu =e(lambda E_{x_{0}})=e^{-Lambda }(E_{0}+lambda E_{x_{0}}+Lambda ^{2}E_{2x_{0}}/2!+ldots +lambda ^{n}E_{nx_{0}}/n!+Punkte ).} One has the following Raikov's theorem on locally compact Abelian groups Let {zeige ihn an } be the Poisson distribution generated by the measure {displaystyle lambda E_{x_{0}}} . Nehme an, dass {displaystyle mu =mu _{1}*in _{2}} , mit {displaystyle ihn _{j}in M^{1}(X)} . Wenn {Anzeigestil x_{0}} is either an infinite order element, or has order 2, dann {displaystyle ihn _{j}} is also a Poisson's distribution. In the case of {Anzeigestil x_{0}} being an element of finite order {displaystyle nneq 2} , {displaystyle ihn _{j}} can fail to be a Poisson's distribution.

References ^ D. Raikov (1937). "On the decomposition of Poisson laws". Dokl. Akad. Wissenschaft. URSS. 14: 9–11. ^ Rukhin A. L. (1970). "Certain statistical and probability problems on groups". Trudy Mat. Inst. Steklov. 111: 52–109. ^ Linnik, Yu. v., Ostrovskii, ich. v. (1977). Decomposition of random variables and vectors. Vorsehung, R. ICH.: Übersetzungen mathematischer Monographien, 48. Amerikanische Mathematische Gesellschaft. Kategorien: Characterization of probability distributionsProbability theoremsTheorems in statistics

Wenn Sie andere ähnliche Artikel wissen möchten Raikov's theorem Sie können die Kategorie besuchen Characterization of probability distributions.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen