Radó's theorem (harmonic functions)

Radó's theorem (harmonic functions) See also Rado's theorem (Teoria di Ramsey) In matematica, Radó's theorem is a result about harmonic functions, named after Tibor Radó. In modo informale, it says that any "nice looking" shape without holes can be smoothly deformed into a disk.

Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Quindi, given any homeomorphism μ : ∂D → ∂Ω, there exists a unique harmonic function u : D → Ω such that u = μ on ∂D and u is a diffeomorphism.

References R. Schoen, S. T. In data odierna. (1997) Lectures on Harmonic Maps. International Press, Inc., Boston, Massachusetts. ISBN 1-57146-002-0.[pagina necessaria] This article incorporates material from Rado's theorem on PlanetMath, che è concesso in licenza in base alla licenza Creative Commons Attribution/Share-Alike.

Categorie: Theorems in harmonic analysis

Se vuoi conoscere altri articoli simili a Radó's theorem (harmonic functions) puoi visitare la categoria Theorems in harmonic analysis.

lascia un commento

L'indirizzo email non verrà pubblicato.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni