Radó's theorem (harmonic functions)

Radó's theorem (harmonic functions) See also Rado's theorem (Théorie de Ramsey) En mathématiques, Radó's theorem is a result about harmonic functions, named after Tibor Radó. Informellement, it says that any "nice looking" shape without holes can be smoothly deformed into a disk.

Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Alors, given any homeomorphism μ : ∂D → ∂Ω, there exists a unique harmonic function u : D → Ω such that u = μ on ∂D and u is a diffeomorphism.

References R. Schön, S. J. Aujourd'hui. (1997) Lectures on Harmonic Maps. International Press, Inc., Boston, Massachusetts. ISBN 1-57146-002-0.[page needed] This article incorporates material from Rado's theorem on PlanetMath, qui est sous licence Creative Commons Attribution/Share-Alike License.

Catégories: Theorems in harmonic analysis

Si vous voulez connaître d'autres articles similaires à Radó's theorem (harmonic functions) vous pouvez visiter la catégorie Theorems in harmonic analysis.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations