Quillen–Suslin theorem

Quillen–Suslin theorem "Serre's problem" redirige ici. Pour d'autres usages, see Serre's conjecture (désambiguïsation). Quillen–Suslin theorem Field Commutative algebra Conjectured by Jean-Pierre Serre Conjectured in 1955 First proof by Daniel Quillen Andrei Suslin First proof in 1976 The Quillen–Suslin theorem, also known as Serre's problem or Serre's conjecture, is a theorem in commutative algebra concerning the relationship between free modules and projective modules over polynomial rings. In the geometric setting it is a statement about the triviality of vector bundles on affine space.

The theorem states that every finitely generated projective module over a polynomial ring is free.

Contenu 1 Histoire 1.1 Arrière plan 2 Généralisation 3 Remarques 4 References History Background Geometrically, finitely generated projective modules over the ring {style d'affichage R[X_{1},des points ,X_{n}]} correspond to vector bundles over affine space {style d'affichage mathbb {UN} _{R}^{n}} , where free modules correspond to trivial vector bundles. This correspondence (from modules to (algebraic) vector bundles) is given by the 'globalisation' or 'twiddlification' functor, sending {displaystyle Mto {widetilde {M}}} (cite Hartshorne II.5, page 110). Affine space is topologically contractible, so it admits no non-trivial topological vector bundles. A simple argument using the exponential exact sequence and the d-bar Poincaré lemma shows that it also admits no non-trivial holomorphic vector bundles.

Jean-Pierre Serre, in his 1955 paper Faisceaux algébriques cohérents, remarked that the corresponding question was not known for algebraic vector bundles: "It is not known whether there exist projective A-modules of finite type which are not free."[1] Ici {style d'affichage A} is a polynomial ring over a field, C'est, {style d'affichage A} = {style d'affichage k[X_{1},des points ,X_{n}]} .

To Serre's dismay, this problem quickly became known as Serre's conjecture. (Serre wrote, "I objected as often as I could [to the name]."[2]) The statement does not immediately follow from the proofs given in the topological or holomorphic case. These cases only guarantee that there is a continuous or holomorphic trivialization, not an algebraic trivialization.

Serre made some progress towards a solution in 1957 when he proved that every finitely generated projective module over a polynomial ring over a field was stably free, meaning that after forming its direct sum with a finitely generated free module, it became free. The problem remained open until 1976, when Daniel Quillen and Andrei Suslin independently proved the result. Quillen was awarded the Fields Medal in 1978 in part for his proof of the Serre conjecture. Leonid Vaseršteĭn later gave a simpler and much shorter proof of the theorem which can be found in Serge Lang's Algebra.

Generalization A generalization relating projective modules over regular Noetherian rings A and their polynomial rings is known as the Bass–Quillen conjecture.

Note that although {displaystyle GL_{n}} -bundles on affine space are all trivial, this is not true for G-bundles where G is a general reductive algebraic group.

Notes ^ "On ignore s'il existe des A-modules projectifs de type fini qui ne soient pas libres." Serre, FAC, p. 243. ^ Lam, p. 1 References Serre, Jean-Pierre (Mars 1955), "Faisceaux algébriques cohérents", Annales de Mathématiques, Deuxième série, 61 (2): 197–278, est ce que je:10.2307/1969915, JSTOR 1969915, M 0068874 Serre, Jean-Pierre (1958), "Modules projectifs et espaces fibrés à fibre vectorielle", Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Exposé 23 (en français), M 0177011 Quillen, Daniel (1976), "Projective modules over polynomial rings", Découvertes mathématiques, 36 (1): 167–171, est ce que je:10.1007/BF01390008, M 0427303 Suslin, Andrei A. (1976), Проективные модули над кольцами многочленов свободны [Projective modules over polynomial rings are free], Doklady Akademii Nauk SSSR (en russe), 229 (5): 1063–1066, M 0469905. Translated in "Projective modules over polynomial rings are free", Soviet Mathematics, 17 (4): 1160–1164, 1976. Langue, Serge (2002), Algèbre, Textes d'études supérieures en mathématiques, volume. 211 (Revised third ed.), New York: Springer Verlag, ISBN 978-0-387-95385-4, M 1878556 An account of this topic is provided by: Lam, J. Oui. (2006), Serre's problem on projective modules, Monographies Springer en mathématiques, Berlin; New York: Springer Science+Business Media, pp. 300pp., ISBN 978-3-540-23317-6, M 2235330 Catégories: Commutative algebraTheorems in abstract algebra

Si vous voulez connaître d'autres articles similaires à Quillen–Suslin theorem vous pouvez visiter la catégorie Commutative algebra.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations