Pythagorean field
Pythagorean field (Redirected from Diller–Dress theorem) Jump to navigation Jump to search In algebra, a Pythagorean field is a field in which every sum of two squares is a square: equivalently it has Pythagoras number equal to 1. A Pythagorean extension of a field {style d'affichage F} is an extension obtained by adjoining an element {style d'affichage {sqrt {1+lambda ^{2}}}} pour certains {style d'affichage lambda } dans {style d'affichage F} . So a Pythagorean field is one closed under taking Pythagorean extensions. For any field {style d'affichage F} there is a minimal Pythagorean field {textstyle F^{mathrm {py} }} containing it, unique up to isomorphism, called its Pythagorean closure.[1] The Hilbert field is the minimal ordered Pythagorean field.[2] Contenu 1 Propriétés 1.1 Equivalent conditions 2 Models of geometry 3 Diller–Dress theorem 4 Superpythagorean fields 5 Remarques 6 References Properties Every Euclidean field (an ordered field in which all non-negative elements are squares) is an ordered Pythagorean field, but the converse does not hold.[3] A quadratically closed field is Pythagorean field but not conversely ( {style d'affichage mathbf {R} } is Pythagorean); toutefois, a non formally real Pythagorean field is quadratically closed.[4] The Witt ring of a Pythagorean field is of order 2 if the field is not formally real, and torsion-free otherwise.[1] For a field {style d'affichage F} there is an exact sequence involving the Witt rings {displaystyle 0rightarrow operatorname {Tor} IW(F)rightarrow W(F)rightarrow W(F^{mathrm {py} })} où {displaystyle IW(F)} is the fundamental ideal of the Witt ring of {style d'affichage F} [5] et {nom de l'opérateur de style d'affichage {Tor} IW(F)} denotes its torsion subgroup (which is just the nilradical of {style d'affichage W.(F)} ).[6] Equivalent conditions The following conditions on a field F are equivalent to F being Pythagorean: The general u-invariant u(F) est 0 ou 1.[7] If ab is not a square in F then there is an order on F for which a, b have different signs.[8] F is the intersection of its Euclidean closures.[9] Models of geometry Pythagorean fields can be used to construct models for some of Hilbert's axioms for geometry (Iyanaga & Kawada 1980, 163 C). The coordinate geometry given by {displaystyle F^{n}} pour {style d'affichage F} a Pythagorean field satisfies many of Hilbert's axioms, such as the incidence axioms, the congruence axioms and the axioms of parallels. Cependant, in general this geometry need not satisfy all Hilbert's axioms unless the field F has extra properties: par exemple, if the field is also ordered then the geometry will satisfy Hilbert's ordering axioms, and if the field is also complete the geometry will satisfy Hilbert's completeness axiom.
The Pythagorean closure of a non-archimedean ordered field, such as the Pythagorean closure of the field of rational functions {style d'affichage mathbf {Q} (X)} in one variable over the rational numbers {style d'affichage mathbf {Q} ,} can be used to construct non-archimedean geometries that satisfy many of Hilbert's axioms but not his axiom of completeness.[10] Dehn used such a field to construct two Dehn planes, examples of non-Legendrian geometry and semi-Euclidean geometry respectively, in which there are many lines though a point not intersecting a given line but where the sum of the angles of a triangle is at least π.[11] Diller–Dress theorem This theorem states that if E/F is a finite field extension, and E is Pythagorean, then so is F.[12] En conséquence, no algebraic number field is Pythagorean, since all such fields are finite over Q, which is not Pythagorean.[13] Superpythagorean fields A superpythagorean field F is a formally real field with the property that if S is a subgroup of index 2 in F∗ and does not contain −1, then S defines an ordering on F. An equivalent definition is that F is a formally real field in which the set of squares forms a fan. A superpythagorean field is necessarily Pythagorean.[12] The analogue of the Diller–Dress theorem holds: if E/F is a finite extension and E is superpythagorean then so is F.[14] In the opposite direction, if F is superpythagorean and E is a formally real field containing F and contained in the quadratic closure of F then E is superpythagorean.[15] Remarques ^ Aller à: a b Milnor & Husemoller (1973) p. 71 ^ Greenberg (2010) ^ Martin (1998) p. 89 ^ Rajwade (1993) p.230 ^ Milnor & Husemoller (1973) p. 66 ^ Milnor & Husemoller (1973) p. 72 ^ Lam (2005) p.410 ^ Lam (2005) p.293 ^ Efrat (2005) p.178 ^ (Iyanaga & Kawada 1980, 163 ré) ^ Dehn (1900) ^ Sauter à: a b Lam (1983) p.45 ^ Lam (2005) p.269 ^ Lam (1983) p.47 ^ Lam (1983) p.48 References Dehn, Max (1900), "Die Legendre'schen Sätze über die Winkelsumme im Dreieck", Annales mathématiques, 53 (3): 404–439, est ce que je:10.1007/BF01448980, ISSN 0025-5831, JFM 31.0471.01 Efrat, Ido (2006), Valuations, orderings, and Milnor K-theory, Enquêtes mathématiques et monographies, volume. 124, Providence, IR: Société mathématique américaine, ISBN 0-8218-4041-X, Zbl 1103.12002 Elman, Richard; Lam, J. Oui. (1972), "Quadratic forms over formally real fields and pythagorean fields", Journal américain de mathématiques, 94: 1155–1194, est ce que je:10.2307/2373568, ISSN 0002-9327, JSTOR 2373568, M 0314878 Greenberg, Marvin J. (2010), "Old and new results in the foundations of elementary plane Euclidean and non-Euclidean geometries", Am. Math. Mon., 117 (3): 198–219, ISSN 0002-9890, Zbl 1206.51015 Iyanaga, Shôkichi; Kawada, Yukiyosi, eds. (1980) [1977], Encyclopedic dictionary of mathematics, Volumes I, II, Translated from the 2nd Japanese edition, paperback version of the 1977 edition (1st ed.), Presse du MIT, ISBN 978-0-262-59010-5, M 0591028 Lam, J. Oui. (1983), Orderings, valuations and quadratic forms, Série de conférences régionales CBMS en mathématiques, volume. 52, Société mathématique américaine, ISBN 0-8218-0702-1, Zbl 0516.12001 Lam, J. Oui. (2005), "Chapter VIII section 4: Pythagorean fields", Introduction to quadratic forms over fields, Études supérieures en mathématiques, volume. 67, Providence, R.I.: Société mathématique américaine, pp. 255–264, ISBN 978-0-8218-1095-8, M 2104929 Martin, George E. (1998), Geometric Constructions, Undergraduate Texts in Mathematics, Springer Verlag, ISBN 0-387-98276-0 Milnor, J; Husemoller, ré. (1973), Symmetric Bilinear Forms, Résultats des mathématiques et leurs zones frontalières, volume. 73, Springer Verlag, ISBN 3-540-06009-X, Zbl 0292.10016 Rajwade, UN. R. (1993), Squares, Série de notes de cours de la London Mathematical Society, volume. 171, la presse de l'Universite de Cambridge, ISBN 0-521-42668-5, Zbl 0785.11022 Catégories: Champ (mathématiques)
Si vous voulez connaître d'autres articles similaires à Pythagorean field vous pouvez visiter la catégorie Champ (mathématiques).
Laisser un commentaire