Primitive element theorem

Primitive element theorem In field theory, the primitive element theorem is a result characterizing the finite degree field extensions that can be generated by a single element. Such a generating element is called a primitive element of the field extension, and the extension is called a simple extension in this case. The theorem states that a finite extension is simple if and only if there are only finitely many intermediate fields. An older result, also often called "primitive element theorem", states that every finite separable extension is simple; it can be seen as a consequence of the former theorem. These theorems imply in particular that all algebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple.

Conteúdo 1 Terminology 2 Exemplo 3 The theorems 4 Characteristic p 5 Constructive results 6 História 7 Referências 8 External links Terminology Let {displaystyle E/F} be a field extension. An element {displaystyle alpha in E} is a primitive element for {displaystyle E/F} E se {displaystyle E=F(alfa ),} ou seja. if every element of {estilo de exibição E} can be written as a rational function in {alfa de estilo de exibição } with coefficients in {estilo de exibição F} . If there exists such a primitive element, então {displaystyle E/F} is referred to as a simple extension.

If the field extension {displaystyle E/F} has primitive element {alfa de estilo de exibição } and is of finite degree {displaystyle n=[E:F]} , then every element x of E can be written uniquely in the form {displaystyle x=f_{n-1}{alfa }^{n-1}+cdots +f_{1}{alfa }+f_{0},} Onde {estilo de exibição f_{eu}in F} para todos eu. Aquilo é, the set {estilo de exibição {1,alfa ,ldots ,{alfa }^{n-1}}} is a basis for E as a vector space over F.

Example If one adjoins to the rational numbers {displaystyle F=mathbb {Q} } the two irrational numbers {estilo de exibição {quadrado {2}}} e {estilo de exibição {quadrado {3}}} to get the extension field {displaystyle E=mathbb {Q} ({quadrado {2}},{quadrado {3}})} de grau 4, one can show this extension is simple, significado {displaystyle E=mathbb {Q} (alfa )} for a single {displaystyle alpha in E} . Tirando {displaystyle alpha ={quadrado {2}}+{quadrado {3}}} , the powers 1, uma , α2, α3 can be expanded as linear combinations of 1, {estilo de exibição {quadrado {2}}} , {estilo de exibição {quadrado {3}}} , {estilo de exibição {quadrado {6}}} com coeficientes inteiros. One can solve this system of linear equations for {estilo de exibição {quadrado {2}}} e {estilo de exibição {quadrado {3}}} sobre {estilo de exibição mathbb {Q} (alfa )} , to obtain {estilo de exibição {quadrado {2}}={tfrac {1}{2}}(alfa ^{3}-9alfa )} e {estilo de exibição {quadrado {3}}=-{tfrac {1}{2}}(alfa ^{3}-11alfa )} . This shows α is indeed a primitive element: {estilo de exibição mathbb {Q} ({quadrado {2}},{quadrado {3}})= mathbb {Q} ({quadrado {2}}+{quadrado {3}}).} The theorems The classical primitive element theorem states: Every separable field extension of finite degree is simple.

This theorem applies to algebraic number fields, ou seja. finite extensions of the rational numbers Q, since Q has characteristic 0 and therefore every finite extension over Q is separable.

The following primitive element theorem (Ernst Steinitz[1]) is more general: A finite field extension {displaystyle E/F} is simple if and only if there exist only finitely many intermediate fields K with {displaystyle Esupseteq Ksupseteq F} .

Using the fundamental theorem of Galois theory, the former theorem immediately follows from the latter.

Characteristic p For a non-separable extension {displaystyle E/F} of characteristic p, there is nevertheless a primitive element provided the degree [E : F] is p: na verdade, there can be no non-trivial intermediate subfields since their degrees would be factors of the prime p.

Quando [E : F] = p2, there may not be a primitive element (in which case there are infinitely many intermediate fields). The simplest example is {displaystyle E=mathbb {F} _{p}(T,você)} , the field of rational functions in two indeterminates T and U over the finite field with p elements, e {displaystyle F=mathbb {F} _{p}(T^{p},U^{p})} . Na verdade, for any α = g(T,você) em E, the Frobenius endomorphism shows that the element αp lies in F , so α is a root of {estilo de exibição f(X)=X^{p}-alfa ^{p}in F[X]} , and α cannot be a primitive element (of degree p2 over F), but instead F(uma) is a non-trivial intermediate field.

Constructive results Generally, the set of all primitive elements for a finite separable extension E / F is the complement of a finite collection of proper F-subspaces of E, namely the intermediate fields. This statement says nothing in the case of finite fields, for which there is a computational theory dedicated to finding a generator of the multiplicative group of the field (a cyclic group), which is a fortiori a primitive element (see primitive element (finite field)). Where F is infinite, a pigeonhole principle proof technique considers the linear subspace generated by two elements and proves that there are only finitely many linear combinations {displaystyle gamma =alpha +cbeta } with c in F, that fail to generate the subfield containing both elements: Como {estilo de exibição F(alfa ,beta )/F(alpha +cbeta )} is a separable extension, E se {estilo de exibição F(alpha +cbeta )subsetneq F(alfa ,beta )} there exists a non-trivial embedding {estilo de exibição sigma :F(alfa ,beta )para {overline {F}}} whose restriction to {estilo de exibição F(alpha +cbeta )} is the identity which means {estilo de exibição sigma (alfa )+csigma (beta )=alpha +cbeta } e {estilo de exibição sigma (beta )neq beta } de modo a {displaystyle c={fratura {sigma (alfa )-alfa }{beta -sigma (beta )}}} . This expression for c can take only {estilo de exibição [F(alfa ):F][F(beta ):F]} different values. For all other value of {displaystyle cin F} então {estilo de exibição F(alfa ,beta )=F(alpha +cbeta )} .

This is almost immediate as a way of showing how Steinitz' result implies the classical result, and a bound for the number of exceptional c in terms of the number of intermediate fields results (this number being something that can be bounded itself by Galois theory and a priori). Portanto, in this case trial-and-error is a possible practical method to find primitive elements.

History In his First Memoir of 1831,[2] Évariste Galois sketched a proof of the classical primitive element theorem in the case of a splitting field of a polynomial over the rational numbers. The gaps in his sketch could easily be filled[3] (as remarked by the referee Siméon Denis Poisson; Galois' Memoir was not published until 1846) by exploiting a theorem[4][5] of Joseph-Louis Lagrange from 1771, which Galois certainly knew. It is likely that Lagrange had already been aware of the primitive element theorem for splitting fields.[5] Galois then used this theorem heavily in his development of the Galois group. Since then it has been used in the development of Galois theory and the fundamental theorem of Galois theory. The two primitive element theorems were proved in their modern form by Ernst Steinitz, in an influential article on field theory in 1910;[1] Steinitz called the "classical" one Theorem of the primitive elements and the other one Theorem of the intermediate fields. Emil Artin reformulated Galois theory in the 1930s without the use of the primitive element theorems.[6][7] Referências ^ Ir para: a b Steinitz, Ernest (1910). "Algebraische Theorie der Körper". Revista de matemática pura e aplicada (em alemão). 137: 167–309. doi:10.1515/crll.1910.137.167. ISSN 1435-5345. ^ Neumann, Peter M. (2011). The mathematical writings of Évariste Galois. Zurique: Sociedade Europeia de Matemática. ISBN 978-3-03719-104-0. OCLC 757486602. ^ Tignol, Jean Pierre (Fevereiro 2016). Galois' Theory of Algebraic Equations (2 ed.). WORLD SCIENTIFIC. p. 231. doi:10.1142/9719. ISBN 978-981-4704-69-4. OCLC 1020698655. ^ Tignol, Jean Pierre (Fevereiro 2016). Galois' Theory of Algebraic Equations (2 ed.). WORLD SCIENTIFIC. p. 135. doi:10.1142/9719. ISBN 978-981-4704-69-4. OCLC 1020698655. ^ Saltar para: a b Cox, David A. (2012). Galois theory (2ª edição). Hoboken, Nova Jersey: John Wiley & Sons. p. 322. ISBN 978-1-118-21845-7. OCLC 784952441. ^ Kleiner, Israel (2007). "§4.1 Galois theory". A History of Abstract Algebra. Springer. p. 64. ISBN 978-0-8176-4685-1. ^ Artin, Emil (1998). Galois theory. Arthur N. Milgram (Republication of the 1944 revised edition of the 1942 first publication by The University Notre Dame Press ed.). Mineola, NOVA IORQUE.: Publicações de Dover. ISBN 0-486-62342-4. OCLC 38144376. External links J. Milne's course notes on fields and Galois theory The primitive element theorem at The primitive element theorem at The primitive element theorem on Ken Brown's website (pdf file) Categorias: Campo (matemática)Teoremas em álgebra abstrata

Se você quiser conhecer outros artigos semelhantes a Primitive element theorem você pode visitar a categoria Campo (matemática).

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação