Poincaré–Bendixson theorem

Poincaré–Bendixson theorem In mathematics, the Poincaré–Bendixson theorem is a statement about the long-term behaviour of orbits of continuous dynamical systems on the plane, cylinder, or two-sphere.[1] Contenu 1 Théorème 2 Discussion 3 Applications 4 Voir également 5 References Theorem Given a differentiable real dynamical system defined on an open subset of the plane, every non-empty compact ω-limit set of an orbit, which contains only finitely many fixed points, est soit[2] a fixed point, a periodic orbit, or a connected set composed of a finite number of fixed points together with homoclinic and heteroclinic orbits connecting these.

En outre, there is at most one orbit connecting different fixed points in the same direction. Cependant, there could be countably many homoclinic orbits connecting one fixed point.

A weaker version of the theorem was originally conceived by Henri Poincaré (1892), although he lacked a complete proof which was later given by Ivar Bendixson (1901).

Discussion The condition that the dynamical system be on the plane is necessary to the theorem. On a torus, par exemple, it is possible to have a recurrent non-periodic orbit.[3] En particulier, chaotic behaviour can only arise in continuous dynamical systems whose phase space has three or more dimensions. However the theorem does not apply to discrete dynamical systems, where chaotic behaviour can arise in two- or even one-dimensional systems.

Applications One important implication is that a two-dimensional continuous dynamical system cannot give rise to a strange attractor. If a strange attractor C did exist in such a system, then it could be enclosed in a closed and bounded subset of the phase space. By making this subset small enough, any nearby stationary points could be excluded. But then the Poincaré–Bendixson theorem says that C is not a strange attractor at all—it is either a limit cycle or it converges to a limit cycle.

See also Rotation number References ^ Coddington, Earl A.; Levinson, Norman (1955). "The Poincaré–Bendixson Theory of Two-Dimensional Autonomous Systems". Theory of Ordinary Differential Equations. New York: McGraw Hill. pp. 389–403. ISBN 978-0-89874-755-3. ^ Teschl, Gerald (2012). Ordinary Differential Equations and Dynamical Systems. Providence: Société mathématique américaine. ISBN 978-0-8218-8328-0. ^ D'Heedene, R.N. (1961). "A third order autonomous differential equation with almost periodic solutions". Journal of Mathematical Analysis and Applications. Elsevier. 3 (2): 344–350. est ce que je:10.1016/0022-247X(61)90059-2. Bendixson, Ivar (1901), "Sur les courbes définies par des équations différentielles" (PDF), Journal de mathématiques, Springer Netherlands, 24 (1): 1–88, est ce que je:10.1007/BF02403068 Poincaré, Henri (1892), "Sur les courbes définies par une équation différentielle", Oeuvres, volume. 1, Paris Categories: Théorèmes dans les systèmes dynamiques

Si vous voulez connaître d'autres articles similaires à Poincaré–Bendixson theorem vous pouvez visiter la catégorie Théorèmes dans les systèmes dynamiques.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations