La théorie de Peixoto

Peixoto's theorem In the theory of dynamical systems, Peixoto theorem, proved by Maurício Peixoto, states that among all smooth flows on surfaces, c'est à dire. compact two-dimensional manifolds, structurally stable systems may be characterized by the following properties: The set of non-wandering points consists only of periodic orbits and fixed points. The set of fixed points is finite and consists only of hyperbolic equilibrium points. Finiteness of attracting or repelling periodic orbits. Absence of saddle-to-saddle connections.

En outre, they form an open set in the space of all flows endowed with C1 topology.

See also Andronov–Pontryagin criterion References Jacob Palis, O. de Melo, Geometric Theory of Dynamical Systems. Springer Verlag, 1982 Cet article lié à la physique mathématique est un bout. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Stability theoryTheorems in dynamical systemsMathematical physics stubs

Si vous voulez connaître d'autres articles similaires à La théorie de Peixoto vous pouvez visiter la catégorie Mathematical physics stubs.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations