Peixoto's theorem

Peixoto's theorem In the theory of dynamical systems, Peixoto theorem, proved by Maurício Peixoto, states that among all smooth flows on surfaces, i.e. compact two-dimensional manifolds, structurally stable systems may be characterized by the following properties: The set of non-wandering points consists only of periodic orbits and fixed points. The set of fixed points is finite and consists only of hyperbolic equilibrium points. Finiteness of attracting or repelling periodic orbits. Absence of saddle-to-saddle connections.

Moreover, they form an open set in the space of all flows endowed with C1 topology.

See also Andronov–Pontryagin criterion References Jacob Palis, W. de Melo, Geometric Theory of Dynamical Systems. Springer-Verlag, 1982 This mathematical physics-related article is a stub. You can help Wikipedia by expanding it.

Categories: Stability theoryTheorems in dynamical systemsMathematical physics stubs

Si quieres conocer otros artículos parecidos a Peixoto's theorem puedes visitar la categoría Mathematical physics stubs.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información