Peano existence theorem

Peano existence theorem Differential equations Navier–Stokes differential equations used to simulate airflow around an obstruction Scope show Fields Classification show Types show Relation to processes Solution show Existence and uniqueness show General topics show Solution methods People show List vte In mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees the existence of solutions to certain initial value problems.

Contenu 1 Histoire 2 Théorème 3 Preuve 4 Related theorems 5 Remarques 6 References History Peano first published the theorem in 1886 with an incorrect proof.[1] Dans 1890 he published a new correct proof using successive approximations.[2] Theorem Let {displaystyle D} be an open subset of {style d'affichage mathbb {R} fois mathbb {R} } avec {displaystyle fcolon Dto mathbb {R} } a continuous function and {displaystyle y'(X)= vol(X,y(X)droit)} a continuous, explicit first-order differential equation defined on D, then every initial value problem {displaystyle yleft(X_{0}droit)=y_{0}} for f with {style d'affichage (X_{0},y_{0})en D} has a local solution {displaystyle zcolon Ito mathbb {R} } où {style d'affichage I} is a neighbourhood of {style d'affichage x_{0}} dans {style d'affichage mathbb {R} } , tel que {displaystyle z'(X)= vol(X,z(X)droit)} pour tous {style d'affichage xin I} .[3] The solution need not be unique: one and the same initial value {style d'affichage (X_{0},y_{0})} may give rise to many different solutions {style d'affichage avec} .

Proof By replacing {style d'affichage y} avec {displaystyle y-y_{0}} , {style d'affichage x} avec {displaystyle x-x_{0}} , we may assume {style d'affichage x_{0}=y_{0}=0} . Comme {displaystyle D} is open there is a rectangle {style d'affichage R=[-X_{1},X_{1}]fois [-y_{1},y_{1}]subset D} .

Car {style d'affichage R} is compact and {style d'affichage f} est continue, Nous avons {displaystyle textstyle sup _{R}|F|leq C

Si vous voulez connaître d'autres articles similaires à Peano existence theorem vous pouvez visiter la catégorie Augustin-Louis Cauchy.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations