# Théorème de Parthasarathy

Parthasarathy's theorem This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources. Trouver des sources: "Théorème de Parthasarathy" – actualités · journaux · livres · universitaires · JSTOR (Février 2016) In mathematics – and in particular the study of games on the unit square – Parthasarathy's theorem is a generalization of Von Neumann's minimax theorem. It states that a particular class of games has a mixed value, provided that at least one of the players has a strategy that is restricted to absolutely continuous distributions with respect to the Lebesgue measure (autrement dit, one of the players is forbidden to use a pure strategy).

The theorem is attributed to the Indian mathematician Thiruvenkatachari Parthasarathy.

Theorem Let {style d'affichage X} et {style d'affichage Y} stand for the unit interval {style d'affichage [0,1]} ; {style d'affichage {mathématique {M}}_{X}} denote the set of probability distributions on {style d'affichage X} (avec {style d'affichage {mathématique {M}}_{Oui}} defined similarly); et {style d'affichage A_{X}} denote the set of absolutely continuous distributions on {style d'affichage X} (avec {style d'affichage A_{Oui}} defined similarly).

Supposer que {style d'affichage k(X,y)} is bounded on the unit square {displaystyle Xtimes Y={(X,y):0leq x,yleq 1}} et cela {style d'affichage k(X,y)} is continuous except possibly on a finite number of curves of the form {displaystyle y=phi _{k}(X)} (avec {displaystyle k=1,2,ldots ,n} ) où le {style d'affichage phi _{k}(X)} are continuous functions. Pour {displaystyle mu in M_{X},lambda in M_{Oui}} , définir {style d'affichage k(dans ,lambda )=int _{y=0}^{1}entier _{x=0}^{1}k(X,y),dmu (X),dlambda (y)=int _{x=0}^{1}entier _{y=0}^{1}k(X,y),dlambda (y),dmu (X).} Alors {style d'affichage max _{mu in {mathématique {M}}_{X}},inf _{lambda in A_{Oui}}k(dans ,lambda )=inf _{lambda in A_{Oui}},maximum _{mu in {mathématique {M}}_{X}}k(dans ,lambda ).} This is equivalent to the statement that the game induced by {style d'affichage k(cdot ,cdot )} has a value. Note that one player (WLOG {style d'affichage Y} ) is forbidden from using a pure strategy.

Parthasarathy goes on to exhibit a game in which {style d'affichage max _{mu in {mathématique {M}}_{X}},inf _{lambda in {mathématique {M}}_{Oui}}k(dans ,lambda )neq inf _{lambda in {mathématique {M}}_{Oui}},maximum _{mu in {mathématique {M}}_{X}}k(dans ,lambda )} which thus has no value. There is no contradiction because in this case neither player is restricted to absolutely continuous distributions (and the demonstration that the game has no value requires both players to use pure strategies).

References T. Parthasarathy 1970. On Games over the unit square, SIAM, le volume 19, Numéro 2.

Cet article sur la théorie des jeux est un bout. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Game theoryTheorems in discrete mathematicsTheorems in measure theoryMicroeconomics stubsEconomic theories stubs

Si vous voulez connaître d'autres articles similaires à Théorème de Parthasarathy vous pouvez visiter la catégorie Game theory.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations