Parovicenko space

Parovicenko space (Redirected from Parovicenko's theorem) Aller à la navigation Aller à la recherche En mathématiques, a Parovicenko space is a topological space similar to the space of non-isolated points of the Stone–Čech compactification of the integers.

Definition A Parovicenko space is a topological space X satisfying the following conditions: X is compact Hausdorff X has no isolated points X has weight c, the cardinality of the continuum (this is the smallest cardinality of a base for the topology). Every two disjoint open Fσ subsets of X have disjoint closures Every non-empty Gδ of X has non-empty interior. Properties The space βNN is a Parovicenko space, where βN is the Stone–Čech compactification of the natural numbers N. Parovicenko (1963) proved that the continuum hypothesis implies that every Parovicenko space is isomorphic[clarification nécessaire] to βNN. van Douwen & van Mill (1978) showed that if the continuum hypothesis is false then there are other examples of Parovicenko spaces.

References van Douwen, Eric K.; van Mill, Jan (1978). "Parovicenko's Characterization of βω- ω Implies CH". Actes de l'American Mathematical Society. 72 (3): 539–541. est ce que je:10.2307/2042468. JSTOR 2042468. Parovicenko, je. je. (1963). "[On a universal bicompactum of weight ℵ]". Doklady Akademii Nauk SSSR. 150: 36–39. M 0150732. Catégories: Topologie générale

Si vous voulez connaître d'autres articles similaires à Parovicenko space vous pouvez visiter la catégorie Topologie générale.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations