# Outer measure Measures are generalizations of length, area and volume, but are useful for much more abstract and irregular sets than intervals in {displaystyle mathbb {R} } or balls in {displaystyle mathbb {R} ^{3}} . One might expect to define a generalized measuring function {stile di visualizzazione varphi } Su {displaystyle mathbb {R} } that fulfills the following requirements: Any interval of reals [un, b] has measure b − a The measuring function {stile di visualizzazione varphi } is a non-negative extended real-valued function defined for all subsets of {displaystyle mathbb {R} } . Translation invariance: For any set A and any real x, the sets A and A+x have the same measure (dove {displaystyle A+x={a+x:ain A}} ) Countable additivity: per qualsiasi sequenza (Agg) of pairwise disjoint subsets of {displaystyle mathbb {R} } {displaystyle varphi a sinistra(tazza grande _{io=1}^{infty }UN_{io}Giusto)=somma _{io=1}^{infty }varfi (UN_{io}).} It turns out that these requirements are incompatible conditions; see non-measurable set. The purpose of constructing an outer measure on all subsets of X is to pick out a class of subsets (to be called measurable) in such a way as to satisfy the countable additivity property.

Contenuti 1 Outer measures 2 Measurability of sets relative to an outer measure 2.1 The measure space associated to an outer measure 3 Restriction and pushforward of an outer measure 3.1 Pushforward 3.2 Restriction 3.3 Measurability of sets relative to a pushforward or restriction 4 Regular outer measures 4.1 Definition of a regular outer measure 4.2 The regular outer measure associated to an outer measure 5 Outer measure and topology 6 Construction of outer measures 6.1 Method I 6.2 Method II 7 Guarda anche 8 Appunti 9 Riferimenti 10 External links Outer measures Given a set {stile di visualizzazione X,} permettere {stile di visualizzazione 2 ^{X}} denote the collection of all subsets of {stile di visualizzazione X,} including the empty set {displaystyle varnothing .} An outer measure on {stile di visualizzazione X} is a set function {displaystyle lui :2^{X}a [0,infty ]} such that null empty set: {displaystyle lui (varnothing )=0} countably subadditive: for arbitrary subsets {stile di visualizzazione A,B_{1},B_{2},ldot } di {stile di visualizzazione X,} {stile di visualizzazione {testo{Se }}Asubseteq bigcup _{j=1}^{infty }B_{j}{testo{ poi }}in (UN)leq somma _{j=1}^{infty }in (B_{j}).} Note that there is no subtlety about infinite summation in this definition. Since the summands are all assumed to be nonnegative, the sequence of partial sums could only diverge by increasing without bound. So the infinite sum appearing in the definition will always be a well-defined element of {stile di visualizzazione [0,infty ].} Se, instead, an outer measure were allowed to take negative values, its definition would have to be modified to take into account the possibility of non-convergent infinite sums.

An alternative and equivalent definition. Some textbooks, such as Halmos (1950), instead define an outer measure on {stile di visualizzazione X} to be a function {displaystyle lui :2^{X}a [0,infty ]} such that null empty set: {displaystyle lui (varnothing )=0} monotone: Se {stile di visualizzazione A} e {stile di visualizzazione B} are subsets of {stile di visualizzazione X} insieme a {displaystyle Asubseteq B,} poi {displaystyle lui (UN)leq mu (B)} for arbitrary subsets {stile di visualizzazione B_{1},B_{2},ldot } di {stile di visualizzazione X,} {displaystyle mu left(tazza grande _{j=1}^{infty }B_{j}Giusto)leq somma _{j=1}^{infty }in (B_{j}).} show Proof of equivalence. Measurability of sets relative to an outer measure Let {stile di visualizzazione X} be a set with an outer measure {displaystyle lui .} One says that a subset {stile di visualizzazione E} di {stile di visualizzazione X} è {displaystyle lui } -measurable (sometimes called Carathéodory-measurable relative to {displaystyle lui ,} after the mathematician Carathéodory) se e solo se {displaystyle lui (UN)=mu (Acap E)+in (Asetminus E)} for every subset {stile di visualizzazione A} di {stile di visualizzazione X.} In modo informale, this says that a {displaystyle lui } -measurable subset is one which may be used as a building block, breaking any other subset apart into pieces (vale a dire, the piece which is inside of the measurable set together with the piece which is outside of the measurable set). In terms of the motivation for measure theory, one would expect that area, Per esempio, should be an outer measure on the plane. One might then expect that every subset of the plane would be deemed "measurable," following the expected principle that {nome dell'operatore dello stile di visualizzazione {area} (Acup B)=nome operatore {area} (UN)+nome operatore {area} (B)} Ogni volta che {stile di visualizzazione A} e {stile di visualizzazione B} are disjoint subsets of the plane. Tuttavia, the formal logical development of the theory shows that the situation is more complicated. A formal implication of the axiom of choice is that for any definition of area as an outer measure which includes as a special case the standard formula for the area of a rectangle, there must be subsets of the plane which fail to be measurable. In particolare, the above "expected principle" è falso, provided that one accepts the axiom of choice.

The measure space associated to an outer measure It is straightforward to use the above definition of {displaystyle lui } -measurability to see that if {displaystyle Asubseteq X} è {displaystyle lui } -measurable then its complement {displaystyle Xsetminus Asubseteq X} è anche {displaystyle lui } -measurable.

The following condition is known as the "countable additivity of {displaystyle lui } on measurable subsets."

Se {stile di visualizzazione A_{1},UN_{2},ldot } sono {displaystyle lui } -measurable subsets of {stile di visualizzazione X} e {stile di visualizzazione A_{io}cap A_{j}} is empty whenever {displaystyle ineq j,} then one has {displaystyle lui {Grande (}tazza grande _{j=1}^{infty }UN_{j}{Grande )}=somma _{j=1}^{infty }in (UN_{j}).} show Proof of countable additivity.

A similar proof shows that: Se {stile di visualizzazione A_{1},UN_{2},ldot } sono {displaystyle lui } -measurable subsets of {stile di visualizzazione X,} then the union {stile di visualizzazione A_{1}cup A_{2}cup cdots } and intersection {stile di visualizzazione A_{1}cap A_{2}cap cdots } are also {displaystyle lui } -measurable.

The properties given here can be summarized by the following terminology: Given any outer measure {displaystyle lui } su un set {stile di visualizzazione X,} the collection of all {displaystyle lui } -measurable subsets of {stile di visualizzazione X} is a σ-algebra. The restriction of {displaystyle lui } to this {displaystyle sigma } -algebra is a measure.

One thus has a measure space structure on {stile di visualizzazione X,} arising naturally from the specification of an outer measure on {stile di visualizzazione X.} This measure space has the additional property of completeness, which is contained in the following statement: Every subset {displaystyle Asubseteq X} tale che {displaystyle lui (UN)=0} è {displaystyle lui } -measurable.

This is easy to prove by using the second property in the "alternative definition" of outer measure.

Restriction and pushforward of an outer measure Let μ be an outer measure on the set X.

Pushforward Given another set Y and a map f : X→Y, define f# μ : 2Y→[0,∞] di {stile di visualizzazione {grande (}f_{sharp }in {grande )}(UN)=mu {grande (}f^{-1}(UN){grande )}.} One can verify directly from the definitions that f# μ is an outer measure on Y.

Restriction Let B be a subset of X. Define μB : 2X→[0,∞] di {displaystyle lui _{B}(UN)=mu (Spesso B).} One can check directly from the definitions that μB is another outer measure on X.

Measurability of sets relative to a pushforward or restriction If a subset A of X is μ-measurable, then it is also μB-measurable for any subset B of X.

Given a map f : X→Y and a subset A of Y, if f −1(UN) is μ-measurable then A is f# μ-measurable. Più generalmente, f −1(UN) is μ-measurable if and only if A is f# (μB)-measurable for every subset B of X.

Regular outer measures Definition of a regular outer measure Given a set X, an outer measure μ on X is said to be regular if any subset can be approximated 'from the outside' by μ-measurable sets. Formalmente, this is requiring either of the following equivalent conditions: for any subset A of X and any positive number ε, there exists a μ-measurable subset B of X which contains A and with μ(B) < μ(A) + ε. for any subset A of X, there exists a μ-measurable subset B of X which contains A and such that μ(B) = μ(A). It is automatic that the second condition implies the first; the first implies the second by considering the intersection of a minimizing sequence of subsets. The regular outer measure associated to an outer measure Given an outer measure μ on a set X, define ν : 2X→[0,∞] by {displaystyle nu (A)=inf {Big {}mu (B):mu {text{-measurable subsets }}Bsubset X{text{ with }}Bsupset A{Big }}.} Then ν is a regular outer measure on X which assigns the same measure as μ to all μ-measurable subsets of X. Every μ-measurable subset is also ν-measurable, and every ν-measurable subset of finite ν-measure is also μ-measurable. So the measure space associated to ν may have a larger σ-algebra than the measure space associated to μ. The restrictions of ν and μ to the smaller σ-algebra are identical. The elements of the larger σ-algebra which are not contained in the smaller σ-algebra have infinite ν-measure and finite μ-measure. From this perspective, ν may be regarded as an extension of μ. Outer measure and topology Suppose (X, d) is a metric space and φ an outer measure on X. If φ has the property that {displaystyle varphi (Ecup F)=varphi (E)+varphi (F)} whenever {displaystyle d(E,F)=inf{d(x,y):xin E,yin F}>0,} then φ is called a metric outer measure.

Teorema. If φ is a metric outer measure on X, then every Borel subset of X is φ-measurable. (The Borel sets of X are the elements of the smallest σ-algebra generated by the open sets.) Construction of outer measures See also: Valuation (measure theory) There are several procedures for constructing outer measures on a set. The classic Munroe reference below describes two particularly useful ones which are referred to as Method I and Method II.

Method I Let X be a set, C a family of subsets of X which contains the empty set and p a non-negative extended real valued function on C which vanishes on the empty set.

Teorema. Suppose the family C and the function p are as above and define {stile di visualizzazione varphi (e)= inf {biggl {}somma _{io=0}^{infty }p(UN_{io}),{bigg |},Esubseteq bigcup _{io=0}^{infty }UN_{io},forall iin mathbb {N} ,UN_{io}in c{biggr }}.} Questo è, the infimum extends over all sequences {Ai} of elements of C which cover E, with the convention that the infimum is infinite if no such sequence exists. Then φ is an outer measure on X.

Method II The second technique is more suitable for constructing outer measures on metric spaces, since it yields metric outer measures. Supponiamo (X, d) is a metric space. As above C is a family of subsets of X which contains the empty set and p a non-negative extended real valued function on C which vanishes on the empty set. For each δ > 0, permettere {stile di visualizzazione C_{delta }={Ain C:nome operatore {diam} (UN)leq delta }} e {displaystyle varphi _{delta }(e)= inf {biggl {}somma _{io=0}^{infty }p(UN_{io}),{bigg |},Esubseteq bigcup _{io=0}^{infty }UN_{io},forall iin mathbb {N} ,UN_{io}in C_{delta }{biggr }}.} Obviously, φδ ≥ φδ' when δ ≤ δ' since the infimum is taken over a smaller class as δ decreases. così {displaystyle lim _{delta rightarrow 0}varfi _{delta }(e)=varphi _{0}(e)in [0,infty ]} esiste (possibly infinite).

Teorema. φ0 is a metric outer measure on X.

This is the construction used in the definition of Hausdorff measures for a metric space.

See also Inner measure Notes ^ Carathéodory 1968 ^ Aliprantis & Border 2006, pp. S379 ^ The original definition given above follows the widely cited texts of Federer and of Evans and Gariepy. Note that both of these books use non-standard terminology in defining a "measure" to be what is here called an "outer measure." References Aliprantis, C.D.; Border, K.C. (2006). Infinite Dimensional Analysis (33a ed.). Berlino, Heidelberg, New York: Casa editrice Springer. ISBN 3-540-29586-0. Carathéodory, C. (1968) . Vorlesungen über reelle Funktionen (in tedesco) (33a ed.). Chelsea Publishing. ISBN 978-0828400381. Evans, Lawrence C.; Gariepy, Ronald F. (2015). Measure theory and fine properties of functions. Revised edition. Textbooks in Mathematics. CRC Press, Boca Raton, FL. pp. xiv+299. ISBN 978-1-4822-4238-6. Federer, H. (1996) . Geometric Measure Theory. I classici in matematica (1st ed reprint ed.). Berlino, Heidelberg, New York: Casa editrice Springer. ISBN 978-3540606567. Pesante, P. (1978) . Measure theory. Testi di laurea in Matematica (2nd ed.). Berlino, Heidelberg, New York: Casa editrice Springer. ISBN 978-0387900889. Munroe, M. e. (1953). Introduction to Measure and Integration (1st ed.). Addison Wesley. ISBN 978-1124042978. Kolmogorov, UN. N.; Fomin, S. V. (1970). Introductory Real Analysis. Riccardo A. Silverman transl. New York: Pubblicazioni di Dover. ISBN 0-486-61226-0. External links Outer measure at Encyclopedia of Mathematics Caratheodory measure at Encyclopedia of Mathematics show vte Measure theory Categories: Measures (measure theory)

Se vuoi conoscere altri articoli simili a Outer measure puoi visitare la categoria Measures (measure theory).

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni