Ostrowski–Hadamard gap theorem In mathematics, the Ostrowski–Hadamard gap theorem is a result about the analytic continuation of complex power series whose non-zero terms are of orders that have a suitable "gap" between them. Such a power series is "badly behaved" in the sense that it cannot be extended to be an analytic function anywhere on the boundary of its disc of convergence. The result is named after the mathematicians Alexander Ostrowski and Jacques Hadamard.

Inhalt 1 Aussage des Theorems 2 Siehe auch 3 Verweise 4 External links Statement of the theorem Let 0 < p1 < p2 < ... be a sequence of integers such that, for some λ > 1 and all j ∈ N, {Anzeigestil {frac {p_{j+1}}{p_{j}}}>lambda .} Lassen (αj)j∈N be a sequence of complex numbers such that the power series {Anzeigestil f(z)= Summe _{jin mathbf {N} }Alpha _{j}z^{p_{j}}} has radius of convergence 1. Then no point z with |z| = 1 is a regular point for f, d.h. f cannot be analytically extended from the open unit disc D to any larger open set including even a single point of the boundary of D.

See also Lacunary function Fabry gap theorem References Krantz, Steven G. (1999). Handbook of complex variables. Boston, MA: Birkhäuser Boston Inc. pp. 199-120. ISBN 0-8176-4011-8. MR1738432 External links Weisstein, Erich W. "Ostrowski – Hadamard Lückensatz". MathWorld.

Dieser Artikel zur mathematischen Analyse ist ein Stummel. Sie können Wikipedia helfen, indem Sie es erweitern.

Kategorien: Mathematical seriesTheorems in complex analysisMathematical analysis stubs

Wenn Sie andere ähnliche Artikel wissen möchten Ostrowski – Hadamard Lückensatz Sie können die Kategorie besuchen Stubs zur mathematischen Analyse.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen