NP-intermediate (Redirected from Ladner's theorem) Jump to navigation Jump to search In computational complexity, problems that are in the complexity class NP but are neither in the class P nor NP-complete are called NP-intermediate, and the class of such problems is called NPI. Ladner's theorem, shown in 1975 by Richard E. Ladner,[1] is a result asserting that, if P ≠ NP, then NPI is not empty; isso é, NP contains problems that are neither in P nor NP-complete. Since it is also true that if NPI problems exist, then P ≠ NP, it follows that P = NP if and only if NPI is empty.

Under the assumption that P ≠ NP, Ladner explicitly constructs a problem in NPI, although this problem is artificial and otherwise uninteresting. It is an open question whether any "natural" problem has the same property: Schaefer's dichotomy theorem provides conditions under which classes of constrained Boolean satisfiability problems cannot be in NPI.[2][3] Some problems that are considered good candidates for being NP-intermediate are the graph isomorphism problem, factoring, and computing the discrete logarithm.

Conteúdo 1 List of problems that might be NP-intermediate 1.1 Algebra and number theory 1.2 Boolean logic 1.3 Computational geometry and computational topology 1.4 Game theory 1.5 Algoritmos gráficos 1.6 Miscellaneous 2 Referências 3 External links List of problems that might be NP-intermediate Algebra and number theory Factoring integers Discrete Log Problem and others related to cryptographic assumptions Isomorphism problems: Group isomorphism problem, Group automorphism, Ring isomorphism, Ring automorphism Linear divisibility: given integers {estilo de exibição x} e {estilo de exibição y} , does {estilo de exibição y} have a divisor congruent to 1 módulo {estilo de exibição x} ?[4][5] Boolean logic IMSAT, the Boolean satisfiability problem for "intersecting monotone CNF": conjunctive normal form, with each clause containing only positive or only negative terms, and each positive clause having a variable in common with each negative clause[6] Minimum Circuit Size Problem[7] Monotone self-duality: given a CNF formula for a Boolean function, is the function invariant under a transformation that negates all of its variables and then negates the output value?[8] Computational geometry and computational topology Computing the rotation distance[9] between two binary trees or the flip distance between two triangulations of the same convex polygon The turnpike problem of reconstructing points on line from their distance multiset[10] The cutting stock problem with a constant number of object lengths[11] Knot triviality[12] Finding a simple closed quasigeodesic on a convex polyhedron[13] Game theory Determining winner in parity games, in which graph vertices are labeled by which player chooses the next step, and the winner is determined by the parity of the highest-priority vertex reached[14] Determining the winner for stochastic graph games, in which graph vertices are labeled by which player chooses the next step, or whether it is chosen randomly, and the winner is determined by reaching a designated sink vertex.[15] Graph algorithms Graph isomorphism problem[16] Planar minimum bisection[17] Deciding whether a graph admits a graceful labeling[18] Recognizing leaf powers and k-leaf powers[19] Recognizing graphs of bounded clique-width[20] Finding a simultaneous embedding with fixed edges[21] Miscellaneous Problems in TFNP[22] Pigeonhole subset sum: given {estilo de exibição m} positive integers whose sum is less than {estilo de exibição 2 ^{n}-1} , find two distinct subsets with the same sum[23] Finding the Vapnik–Chervonenkis dimension of a given family of sets[24] References ^ Ladner, Ricardo (1975). "On the Structure of Polynomial Time Reducibility". Jornal da ACM. 22 (1): 155-171. doi:10.1145/321864.321877. S2CID 14352974. ^ Grädel, Eric; Kolaitis, Phokion G.; Libkin, Leonid; Marx, Maarten; Spencer, Joel; Vardi, Moshe Y.; Venema, Yde; Weinstein, Scott (2007). Finite model theory and its applications. Texts in Theoretical Computer Science. An EATCS Series. Berlim: Springer-Verlag. p. 348. ISBN 978-3-540-00428-8. Zbl 1133.03001. ^ Schaefer, Thomas J. (1978). "A complexidade dos problemas de satisfatibilidade" (PDF). Proc. 10th Ann. ACM Symp. on Theory of Computing. pp. 216-226. SENHOR 0521057. ^ Adleman, Leonardo; Manders, Kenneth (1977). "Reducibility, randomness, and intractibility". Proceedings of the 9th ACM Symp. on Theory of Computing (STOC '77). doi:10.1145/800105.803405. ^ Papadimitriou, Christos H. (1994). Complexidade computacional. Addison-Wesley. p. 236. ISBN 9780201530827. ^ Eiter, Thomas; Gottlob, Georg (2002). "Hypergraph transversal computation and related problems in logic and AI". In Flesca, Sérgio; Greco, Sérgio; Leone, Nicola; Ianni, Giovambattista (ed.). Logics in Artificial Intelligence, European Conference, JELIA 2002, Cosenza, Itália, Setembro, 23-26, Processos. Notas de aula em Ciência da Computação. Volume. 2424. Springer. pp. 549–564. doi:10.1007/3-540-45757-7_53. ^ Kabanets, Valentine; Cai, Jin-Yi (2000). "Circuit minimization problem". Proc. 32nd Symposium on Theory of Computing. Portland, Óregon, EUA. pp. 73–79. doi:10.1145/335305.335314. S2CID 785205. ECCC TR99-045. ^ Eiter, Thomas; Makino, Kazuhisa; Gottlob, Georg (2008). "Computational aspects of monotone dualization: a brief survey". Discrete Applied Mathematics. 156 (11): 2035–2049. doi:10.1016/j.dam.2007.04.017. SENHOR 2437000. S2CID 10096898. ^ Sleator, Daniel D.; Tarjan, Robert E.; Thurston, William P. (1988). "Rotation distance, triangulations, and hyperbolic geometry". Jornal da Sociedade Americana de Matemática. 1 (3): 647–681. doi:10.2307/1990951. JSTOR 1990951. SENHOR 0928904. ^ Skiena, Steven; Smith, Warren D.; Lemke, Paulo (1990). "Reconstructing Sets from Interpoint Distances (Extended Abstract)". In Seidel, Raimund (ed.). Proceedings of the Sixth Annual Symposium on Computational Geometry, Berkeley, CA, EUA, Junho 6-8, 1990. ACM. pp. 332–339. doi:10.1145/98524.98598. ^ Jansen, Klaus; Solis-Oba, Roberto (2011). "A polynomial time OPT + 1 algorithm for the cutting stock problem with a constant number of object lengths". Mathematics of Operations Research. 36 (4): 743–753. doi:10.1287/moor.1110.0515. SENHOR 2855867. ^ Lackenby, Marco (2021). "The efficient certification of knottedness and Thurston norm". Avanços em Matemática. 387: Paper No. 107796. arXiv:1604.00290. doi:10.1016/j.aim.2021.107796. SENHOR 4274879. S2CID 119307517. ^ Demaine, Eric D.; O'Rourke, Joseph (2007). "24 Geodesics: Lyusternik–Schnirelmann". Geometric folding algorithms: Linkages, origami, polyhedra. Cambridge: Cambridge University Press. pp. 372–375. doi:10.1017/CBO9780511735172. ISBN 978-0-521-71522-5. SENHOR 2354878.. ^ Jurdziński, Marcin (1998). "Deciding the winner in parity games is in UP {displaystyle cap } co-UP". Cartas de Processamento de Informações. 68 (3): 119-124. doi:10.1016/S0020-0190(98)00150-1. SENHOR 1657581. ^ Condon, Ana (1992). "The complexity of stochastic games". Informação e Computação. 96 (2): 203-224. doi:10.1016/0890-5401(92)90048-K. SENHOR 1147987. ^ Grohe, Martinho; Neuen, Daniel (Junho 2021). "Recent advances on the graph isomorphism problem". Surveys in Combinatorics 2021. Cambridge University Press. pp. 187–234. arXiv:2011.01366. doi:10.1017/9781009036214.006. S2CID 226237505. ^ Karpinski, Marek (2002). "Approximability of the minimum bisection problem: an algorithmic challenge". In Diks, Krzysztof; Rytter, Wojciech (ed.). Mathematical Foundations of Computer Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland, Agosto 26-30, 2002, Processos. Notas de aula em Ciência da Computação. Volume. 2420. Springer. pp. 59–67. doi:10.1007/3-540-45687-2_4. ^ Gallian, Joseph A. (dezembro 17, 2021). "A dynamic survey of graph labeling". Revista Eletrônica de Combinatória. 5: Dynamic Survey 6. SENHOR 1668059. ^ Nishimura, N.; Ragde, P.; Thilikos, D.M. (2002). "On graph powers for leaf-labeled trees". Diário de Algoritmos. 42: 69-108. doi:10.1006/jagm.2001.1195.. ^ Fellows, Michael R.; Rosamond, Frances A.; Rotics, Udi; Szeider, Stefan (2009). "Clique-width is NP-complete". Revista SIAM sobre Matemática Discreta. 23 (2): 909–939. doi:10.1137/070687256. SENHOR 2519936.. ^ Gassner, Elisabeth; Jünger, Michael; Percan, Merijam; Schaefer, Marco; Schulz, Michael (2006). "Simultaneous graph embeddings with fixed edges". Graph-Theoretic Concepts in Computer Science: 32nd International Workshop, WG 2006, Bergen, Norway, Junho 22-24, 2006, Revised Papers (PDF). Notas de aula em Ciência da Computação. Volume. 4271. Berlim: Springer. pp. 325–335. doi:10.1007/11917496_29. SENHOR 2290741.. ^ Megiddo, Nimrod; Papadimitriou, Christos H. (1991). "On total functions, existence theorems and computational complexity" (PDF). Theoretical Computer Science. 81 (2): 317-324. doi:10.1016/0304-3975(91)90200-eu. SENHOR 1107721. ^ Papadimitriou, Christos H. (1994). "On the complexity of the parity argument and other inefficient proofs of existence". Revista de Ciências da Computação e Sistemas. 48 (3): 498–532. doi:10.1016/S0022-0000(05)80063-7. SENHOR 1279412. ^ Papadimitriou, Christos H.; Yannakakis, Mihalis (1996). "On limited nondeterminism and the complexity of the V-C dimension". Revista de Ciências da Computação e Sistemas. 53 (2, papel 1): 161–170. doi:10.1006/jcss.1996.0058. SENHOR 1418886. External links Complexity Zoo: Class NPI Basic structure, Turing reducibility and NP-hardness Lance Fortnow (24 Marchar 2003). "Fundamentos da Complexidade, Lição 16: Ladner's Theorem". Recuperado 1 novembro 2013. Categorias: Complexity classes

Se você quiser conhecer outros artigos semelhantes a NP-intermediate você pode visitar a categoria Complexity classes.

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação