# Noether's second theorem

Noether's second theorem In mathematics and theoretical physics, Noether's second theorem relates symmetries of an action functional with a system of differential equations.[1] The action S of a physical system is an integral of a so-called Lagrangian function L, from which the system's behavior can be determined by the principle of least action.

Spécifiquement, the theorem says that if the action has an infinite-dimensional Lie algebra of infinitesimal symmetries parameterized linearly by k arbitrary functions and their derivatives up to order m, then the functional derivatives of L satisfy a system of k differential equations.

Noether's second theorem is sometimes used in gauge theory. Gauge theories are the basic elements of all modern field theories of physics, such as the prevailing Standard Model.

The theorem is named after Emmy Noether.

Contenu 1 Voir également 2 Remarques 3 Références 4 Further reading See also Noether's first theorem Noether identities Gauge symmetry (mathématiques) Notes ^ Noether, Emmy (1918), "Invariante Variationsprobleme", Nachr. ré. König. Gesellsch. ré. Wiss. Zu Göttingen, Math-phys. Klasse, 1918: 235–257 Translated in Noether, Emmy (1971). "Invariant variation problems". Transport Theory and Statistical Physics. 1 (3): 186–207. arXiv:physics/0503066. Code bib:1971TTSP....1..186N. est ce que je:10.1080/00411457108231446. S2CID 119019843. References Kosmann-Schwarzbach, Yvette (2010). The Noether theorems: Invariance and conservation laws in the twentieth century. Sources and Studies in the History of Mathematics and Physical Sciences. Springer Verlag. ISBN 978-0-387-87867-6. Olver, Pierre (1993). Applications of Lie groups to differential equations. Textes d'études supérieures en mathématiques. Volume. 107 (2sd éd.). Springer Verlag. ISBN 0-387-95000-1. Sardanashvily, g. (2016). Noether's Theorems. Applications in Mechanics and Field Theory. Springer Verlag. ISBN 978-94-6239-171-0. Further reading Noether, Emmy (1971). "Invariant Variation Problems". Transport Theory and Statistical Physics. 1 (3): 186–207. arXiv:physics/0503066. Code bib:1971TTSP....1..186N. est ce que je:10.1080/00411457108231446. S2CID 119019843. Fulp, Ron; Lada, À M; Stasheff, Jim (2002). "Noether's variational theorem II and the BV formalism". arXiv:math/0204079. Bashkirov, RÉ.; Giachetta, G.; Mangiarotti, L; Sardanashvily, g (2008). "The KT-BRST Complex of a Degenerate Lagrangian System". Letters in Mathematical Physics. 83 (3): 237–252. arXiv:math-ph/0702097. Code bib:2008LMaPh..83..237B. est ce que je:10.1007/s11005-008-0226-y. S2CID 119716996. Montesinos, Merced; Gonzalez, Diego; Celada, Mariano; Diaz, Bogar (2017). "Reformulation of the symmetries of first-order general relativity". Classical and Quantum Gravity. 34 (20): 205002. arXiv:1704.04248. Code bib:2017CQGra..34t5002M. est ce que je:10.1088/1361-6382/aa89f3. S2CID 119268222. Montesinos, Merced; Gonzalez, Diego; Celada, Mariano (2018). "The gauge symmetries of first-order general relativity with matter fields". Classical and Quantum Gravity. 35 (20): 205005. arXiv:1809.10729. Code bib:2018CQGra..35t5005M. est ce que je:10.1088/1361-6382/aae10d. S2CID 53531742. Catégories: Theoretical physicsCalculus of variationsPartial differential equationsConservation lawsTheorems in mathematical physicsQuantum field theorySymmetry

Si vous voulez connaître d'autres articles similaires à Noether's second theorem vous pouvez visiter la catégorie Calcul des variations.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations