No-wandering-domain theorem

No-wandering-domain theorem (Redirected from No wandering domain theorem) Aller à la navigation Aller à la recherche En mathématiques, the no-wandering-domain theorem is a result on dynamical systems, proven by Dennis Sullivan in 1985.

The theorem states that a rational map f : Ĉ → Ĉ with deg(F) ≥ 2 does not have a wandering domain, where Ĉ denotes the Riemann sphere. Plus précisément, for every component U in the Fatou set of f, la séquence {style d'affichage U,F(tu),F(F(tu)),des points ,f ^{n}(tu),des points } will eventually become periodic. Ici, f n denotes the n-fold iteration of f, C'est, {style d'affichage f^{n}=underbrace {fcirc fcirc cdots circ f} _{n}.} This image illustrates the dynamics of {style d'affichage f(z)=z+2pi sin(z)} ; the Fatou set (consisting entirely of wandering domains) is shown in white, while the Julia set is shown in tones of gray.

The theorem does not hold for arbitrary maps; par exemple, the transcendental map {style d'affichage f(z)=z+2pi sin(z)} has wandering domains. Cependant, the result can be generalized to many situations where the functions naturally belong to a finite-dimensional parameter space, most notably to transcendental entire and meromorphic functions with a finite number of singular values.

References Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics, Springer Verlag, New York, 1993, ISBN 0-387-97942-5 MR1230383 Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. je. Solution of the Fatou-Julia problem on wandering domains, Annales de Mathématiques 122 (1985), non. 3, 401–18. MR0819553 S. Zakeri, Sullivan's proof of Fatou's no wandering domain conjecture This chaos theory-related article is a stub. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Ergodic theoryLimit setsTheorems in dynamical systemsComplex dynamicsChaos theory stubs

Si vous voulez connaître d'autres articles similaires à No-wandering-domain theorem vous pouvez visiter la catégorie Théorie ergodique.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations