Newton's theorem (quadrilateral)

Newton's theorem (quadrilateral) P lies on the Newton line EF In Euclidean geometry Newton's theorem states that in every tangential quadrilateral other than a rhombus, the center of the incircle lies on the Newton line.

Let ABCD be a tangential quadrilateral with at most one pair of parallel sides. Außerdem, let E and F the midpoints of its diagonals AC and BD and P be the center of its incircle. Given such a configuration the point P is located on the Newton line, that is line EF connecting the midpoints of the diagonals.

A tangential quadrilateral with two pairs of parallel sides is a rhombus. In this case both midpoints and the center of the incircle coincide and by definition no Newton line exists.

Newton's theorem can easily be derived from Anne's theorem considering that in tangential quadrilaterals the combined lengths of opposite sides are equal (Pitot-Theorem: a + c = b + d). Now according to Anne's theorem showing that the combined areas of opposite triangles PAD and PBC and the combined areas of triangles PAB and PCD are equal is sufficient to ensure that P lies on EF. Let r be the radius of the incircle, then r is also the altitude of all four triangles.

{Anzeigestil {Start{ausgerichtet}&A(triangle PAB)+EIN(triangle PCD)\[5Punkt]={}&{tfrac {1}{2}}ra+{tfrac {1}{2}}rc={tfrac {1}{2}}r(a+c)\[5Punkt]={}&{tfrac {1}{2}}r(b+t)={tfrac {1}{2}}rb+{tfrac {1}{2}}rd\[5Punkt]={}&A(triangle PBC)+EIN(triangle PAD)Ende{ausgerichtet}}} References Claudi Alsina, Roger B. Nelsen: Charming Proofs: A Journey Into Elegant Mathematics. MAA, 2010, ISBN 9780883853481, pp. 117–118 (online copy, p. 117, at Google Books) External links Newton’s and Léon Anne’s Theorems at Categories: Theorems about quadrilaterals and circles

Wenn Sie andere ähnliche Artikel wissen möchten Newton's theorem (quadrilateral) Sie können die Kategorie besuchen Theorems about quadrilaterals and circles.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen