Nachbin's theorem

Nachbin's theorem This article is about Nachbin's theorem on complex analysis. For Nachbin's theorem on approximation theory, see Stone–Weierstrass theorem § Nachbin's theorem.
In mathematics, in the area of complex analysis, Nachbin's theorem (named after Leopoldo Nachbin) is commonly used to establish a bound on the growth rates for an analytic function. This article provides a brief review of growth rates, including the idea of a function of exponential type. Classification of growth rates based on type help provide a finer tool than big O or Landau notation, since a number of theorems about the analytic structure of the bounded function and its integral transforms can be stated. In particular, Nachbin's theorem may be used to give the domain of convergence of the generalized Borel transform, given below.
Contents 1 Exponential type 2 Ψ type 3 Borel transform 4 Nachbin resummation 5 Fréchet space 6 See also 7 References Exponential type Main article: Exponential type A function f(z) defined on the complex plane is said to be of exponential type if there exist constants M and α such that {displaystyle |f(re^{itheta })|leq Me^{alpha r}} in the limit of {displaystyle rto infty } . Here, the complex variable z was written as {displaystyle z=re^{itheta }} to emphasize that the limit must hold in all directions θ. Letting α stand for the infimum of all such α, one then says that the function f is of exponential type α.
For example, let {displaystyle f(z)=sin(pi z)} . Then one says that {displaystyle sin(pi z)} is of exponential type π, since π is the smallest number that bounds the growth of {displaystyle sin(pi z)} along the imaginary axis. So, for this example, Carlson's theorem cannot apply, as it requires functions of exponential type less than π.
Ψ type Bounding may be defined for other functions besides the exponential function. In general, a function {displaystyle Psi (t)} is a comparison function if it has a series {displaystyle Psi (t)=sum _{n=0}^{infty }Psi _{n}t^{n}} with {displaystyle Psi _{n}>0} for all n, and {displaystyle lim _{nto infty }{frac {Psi _{n+1}}{Psi _{n}}}=0.} Comparison functions are necessarily entire, which follows from the ratio test. If {displaystyle Psi (t)} is such a comparison function, one then says that f is of Ψ-type if there exist constants M and τ such that {displaystyle left|fleft(re^{itheta }right)right|leq MPsi (tau r)} as {displaystyle rto infty } . If τ is the infimum of all such τ one says that f is of Ψ-type τ.
Nachbin's theorem states that a function f(z) with the series {displaystyle f(z)=sum _{n=0}^{infty }f_{n}z^{n}} is of Ψ-type τ if and only if {displaystyle limsup _{nto infty }left|{frac {f_{n}}{Psi _{n}}}right|^{1/n}=tau .} Borel transform Nachbin's theorem has immediate applications in Cauchy theorem-like situations, and for integral transforms. For example, the generalized Borel transform is given by {displaystyle F(w)=sum _{n=0}^{infty }{frac {f_{n}}{Psi _{n}w^{n+1}}}.} If f is of Ψ-type τ, then the exterior of the domain of convergence of {displaystyle F(w)} , and all of its singular points, are contained within the disk {displaystyle |w|leq tau .} Furthermore, one has {displaystyle f(z)={frac {1}{2pi i}}oint _{gamma }Psi (zw)F(w),dw} where the contour of integration γ encircles the disk {displaystyle |w|leq tau } . This generalizes the usual Borel transform for exponential type, where {displaystyle Psi (t)=e^{t}} . The integral form for the generalized Borel transform follows as well. Let {displaystyle alpha (t)} be a function whose first derivative is bounded on the interval {displaystyle [0,infty )} , so that {displaystyle {frac {1}{Psi _{n}}}=int _{0}^{infty }t^{n},dalpha (t)} where {displaystyle dalpha (t)=alpha ^{prime }(t),dt} . Then the integral form of the generalized Borel transform is {displaystyle F(w)={frac {1}{w}}int _{0}^{infty }fleft({frac {t}{w}}right),dalpha (t).} The ordinary Borel transform is regained by setting {displaystyle alpha (t)=e^{-t}} . Note that the integral form of the Borel transform is just the Laplace transform.
Nachbin resummation Nachbin resummation (generalized Borel transform) can be used to sum divergent series that escape to the usual Borel summation or even to solve (asymptotically) integral equations of the form: {displaystyle g(s)=sint _{0}^{infty }K(st)f(t),dt} where f(t) may or may not be of exponential growth and the kernel K(u) has a Mellin transform. The solution can be obtained as {displaystyle f(x)=sum _{n=0}^{infty }{frac {a_{n}}{M(n+1)}}x^{n}} with {displaystyle g(s)=sum _{n=0}^{infty }a_{n}s^{-n}} and M(n) is the Mellin transform of K(u). An example of this is the Gram series {displaystyle pi (x)approx 1+sum _{n=1}^{infty }{frac {log ^{n}(x)}{ncdot n!zeta (n+1)}}.} in some cases as an extra condition we require {displaystyle int _{0}^{infty }K(t)t^{n},dt} to be finite for {displaystyle n=0,1,2,3,...} and different from 0.
Fréchet space Collections of functions of exponential type {displaystyle tau } can form a complete uniform space, namely a Fréchet space, by the topology induced by the countable family of norms {displaystyle |f|_{n}=sup _{zin mathbb {C} }exp left[-left(tau +{frac {1}{n}}right)|z|right]|f(z)|.} See also Divergent series Borel summation Euler summation Cesàro summation Lambert summation Mittag-Leffler summation Phragmén–Lindelöf principle Abelian and tauberian theorems Van Wijngaarden transformation References L. Nachbin, "An extension of the notion of integral functions of the finite exponential type", Anais Acad. Brasil. Ciencias. 16 (1944) 143–147. Ralph P. Boas, Jr. and R. Creighton Buck, Polynomial Expansions of Analytic Functions (Second Printing Corrected), (1964) Academic Press Inc., Publishers New York, Springer-Verlag, Berlin. Library of Congress Card Number 63-23263. (Provides a statement and proof of Nachbin's theorem, as well as a general review of this topic.) A.F. Leont'ev (2001) [1994], "Function of exponential type", Encyclopedia of Mathematics, EMS Press A.F. Leont'ev (2001) [1994], "Borel transform", Encyclopedia of Mathematics, EMS Press Categories: Integral transformsTheorems in complex analysisSummability methods
Si quieres conocer otros artículos parecidos a Nachbin's theorem puedes visitar la categoría Integral transforms.
Deja una respuesta