Mumford vanishing theorem

Mumford vanishing theorem In algebraic geometry, the Mumford vanishing theorem proved by Mumford[1] in 1967 states that if L is a semi-ample invertible sheaf with Iitaka dimension at least 2 on a complex projective manifold, then {displaystyle H^{i}(X,L^{-1})=0{text{ for }}i=0,1. } The Mumford vanishing theorem is related to the Ramanujam vanishing theorem, and is generalized by the Kawamata–Viehweg vanishing theorem.

References ^ Mumford, David (1967), "Pathologies. III", American Journal of Mathematics, 89 (1): 94–104, doi:10.2307/2373099, ISSN 0002-9327, JSTOR 2373099, MR 0217091 Kawamata, Yujiro (1982), "A generalization of Kodaira-Ramanujam's vanishing theorem", Mathematische Annalen, 261 (1): 43–46, doi:10.1007/BF01456407, ISSN 0025-5831, MR 0675204, S2CID 120101105 This abstract algebra-related article is a stub. You can help Wikipedia by expanding it.

Categories: Theorems in algebraic geometryAbstract algebra stubs

Si quieres conocer otros artículos parecidos a Mumford vanishing theorem puedes visitar la categoría Abstract algebra stubs.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información