# Multiplication theorem Multiplication theorem This article needs additional citations for verification. Bitte helfen Sie mit, diesen Artikel zu verbessern, indem Sie zuverlässige Quellen zitieren. Nicht bezogenes Material kann angefochten und entfernt werden. Quellen finden: "Multiplication theorem" – news · newspapers · books · scholar · JSTOR (Februar 2021) (Erfahren Sie, wie und wann Sie diese Vorlagennachricht entfernen können) In Mathematik, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; das ist, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.

Inhalt 1 Finite characteristic 2 Gamma function–Legendre formula 3 Polygamma function, harmonic numbers 4 Hurwitz zeta function 5 Periodic zeta function 6 Polylogarithm 7 Kummer's function 8 Bernoulli polynomials 9 Bernoulli map 10 Characteristic zero 11 Anmerkungen 12 References Finite characteristic The multiplication theorem takes two common forms. In the first case, a finite number of terms are added or multiplied to give the relation. In the second case, an infinite number of terms are added or multiplied. The finite form typically occurs only for the gamma and related functions, for which the identity follows from a p-adic relation over a finite field. Zum Beispiel, the multiplication theorem for the gamma function follows from the Chowla–Selberg formula, which follows from the theory of complex multiplication. The infinite sums are much more common, and follow from characteristic zero relations on the hypergeometric series.

The following tabulates the various appearances of the multiplication theorem for finite characteristic; the characteristic zero relations are given further down. Auf alle Fälle, n and k are non-negative integers. For the special case of n = 2, the theorem is commonly referred to as the duplication formula.

Gamma function–Legendre formula The duplication formula and the multiplication theorem for the gamma function are the prototypical examples. The duplication formula for the gamma function is {Anzeigestil Gamma (z);Gamma left(z+{frac {1}{2}}Rechts)=2^{1-2z};{quadrat {Pi }};Gamma (2z).} It is also called the Legendre duplication formula or Legendre relation, in honor of Adrien-Marie Legendre. The multiplication theorem is {Anzeigestil Gamma (z);Gamma left(z+{frac {1}{k}}Rechts);Gamma left(z+{frac {2}{k}}Rechts)cdots Gamma left(z+{frac {k-1}{k}}Rechts)=(2Pi )^{frac {k-1}{2}};k^{frac {1-2kz}{2}};Gamma (kz)} for integer k ≥ 1, and is sometimes called Gauss's multiplication formula, in honour of Carl Friedrich Gauss. The multiplication theorem for the gamma functions can be understood to be a special case, for the trivial Dirichlet character, of the Chowla–Selberg formula.

Polygamma function, harmonic numbers The polygamma function is the logarithmic derivative of the gamma function, und somit, the multiplication theorem becomes additive, instead of multiplicative: {Anzeigestil k^{m}psi ^{(m-1)}(kz)= Summe _{n=0}^{k-1}psi ^{(m-1)}links(z+{frac {n}{k}}Rechts)} zum {displaystyle m>1} , und, zum {displaystyle m=1} , one has the digamma function: {displaystyle kleft[psi (kz)-Protokoll(k)Rechts]= Summe _{n=0}^{k-1}psi left(z+{frac {n}{k}}Rechts).} The polygamma identities can be used to obtain a multiplication theorem for harmonic numbers.

Hurwitz zeta function For the Hurwitz zeta function generalizes the polygamma function to non-integer orders, and thus obeys a very similar multiplication theorem: {Anzeigestil k^{s}Zeta (s)= Summe _{n=1}^{k}zeta left(s,{frac {n}{k}}Rechts),} wo {displaystyle zeta (s)} is the Riemann zeta function. This is a special case of {Anzeigestil k^{s},Zeta (s,kz)= Summe _{n=0}^{k-1}zeta left(s,z+{frac {n}{k}}Rechts)} und {displaystyle zeta (s,kz)= Summe _{n=0}^{unendlich }{s+n-1 choose n}(1-k)^{n}z^{n}Zeta (s+n,z).} Multiplication formulas for the non-principal characters may be given in the form of Dirichlet L-functions.

Periodic zeta function The periodic zeta function is sometimes defined as {Anzeigestil F(s;q)= Summe _{m=1}^{unendlich }{frac {e^{2pi imq}}{m^{s}}}= Betreibername {Li} _{s}links(e^{2pi iq}Rechts)} where Lis(z) is the polylogarithm. It obeys the duplication formula {Anzeigestil 2 ^{-s}F(s;q)=Fleft(s,{frac {q}{2}}Rechts)+Fleft(s,{frac {q+1}{2}}Rechts).} As such, it is an eigenvector of the Bernoulli operator with eigenvalue 2−s. The multiplication theorem is {Anzeigestil k^{-s}F(s;kq)= Summe _{n=0}^{k-1}Fleft(s,q+{frac {n}{k}}Rechts).} The periodic zeta function occurs in the reflection formula for the Hurwitz zeta function, which is why the relation that it obeys, and the Hurwitz zeta relation, differ by the interchange of s → −s.

The Bernoulli polynomials may be obtained as a limiting case of the periodic zeta function, taking s to be an integer, and thus the multiplication theorem there can be derived from the above. Ähnlich, substituting q = log z leads to the multiplication theorem for the polylogarithm.

Polylogarithm The duplication formula takes the form {Anzeigestil 2 ^{1-s}Name des Bedieners {Li} _{s}(z^{2})= Betreibername {Li} _{s}(z)+Name des Bedieners {Li} _{s}(-z).} The general multiplication formula is in the form of a Gauss sum or discrete Fourier transform: {Anzeigestil k^{1-s}Name des Bedieners {Li} _{s}(z^{k})= Summe _{n=0}^{k-1}Name des Bedieners {Li} _{s}links(ze^{i2pi n/k}Rechts).} These identities follow from that on the periodic zeta function, taking z = log q.

Kummer's function The duplication formula for Kummer's function is {Anzeigestil 2 ^{1-n}Lambda _{n}(-z^{2})=Lambda _{n}(z)+Lambda _{n}(-z)} and thus resembles that for the polylogarithm, but twisted by i.

Bernoulli polynomials For the Bernoulli polynomials, the multiplication theorems were given by Joseph Ludwig Raabe in 1851: {Anzeigestil k^{1-m}B_{m}(kx)= Summe _{n=0}^{k-1}B_{m}links(x+{frac {n}{k}}Rechts)} and for the Euler polynomials, {Anzeigestil k^{-m}E_{m}(kx)= Summe _{n=0}^{k-1}(-1)^{n}E_{m}links(x+{frac {n}{k}}Rechts)Quad {mbox{ zum }}k=1,3,dots } und {Anzeigestil k^{-m}E_{m}(kx)={frac {-2}{m+1}}Summe _{n=0}^{k-1}(-1)^{n}B_{m+1}links(x+{frac {n}{k}}Rechts)Quad {mbox{ zum }}k=2,4,dots .} The Bernoulli polynomials may be obtained as a special case of the Hurwitz zeta function, and thus the identities follow from there.

Bernoulli map The Bernoulli map is a certain simple model of a dissipative dynamical system, describing the effect of a shift operator on an infinite string of coin-flips (the Cantor set). The Bernoulli map is a one-sided version of the closely related Baker's map. The Bernoulli map generalizes to a k-adic version, which acts on infinite strings of k symbols: this is the Bernoulli scheme. The transfer operator {Anzeigestil {mathematisch {L}}_{k}} corresponding to the shift operator on the Bernoulli scheme is given by {Anzeigestil [{mathematisch {L}}_{k}f](x)={frac {1}{k}}Summe _{n=0}^{k-1}geflogen({frac {x+n}{k}}Rechts)} Perhaps not surprisingly, the eigenvectors of this operator are given by the Bernoulli polynomials. Das ist, one has that {Anzeigestil {mathematisch {L}}_{k}B_{m}={frac {1}{k^{m}}}B_{m}} It is the fact that the eigenvalues {Anzeigestil k^{-m}<1} that marks this as a dissipative system: for a non-dissipative measure-preserving dynamical system, the eigenvalues of the transfer operator lie on the unit circle. One may construct a function obeying the multiplication theorem from any totally multiplicative function. Let {displaystyle f(n)} be totally multiplicative; that is, {displaystyle f(mn)=f(m)f(n)} for any integers m, n. Define its Fourier series as {displaystyle g(x)=sum _{n=1}^{infty }f(n)exp(2pi inx)} Assuming that the sum converges, so that g(x) exists, one then has that it obeys the multiplication theorem; that is, that {displaystyle {frac {1}{k}}sum _{n=0}^{k-1}gleft({frac {x+n}{k}}right)=f(k)g(x)} That is, g(x) is an eigenfunction of Bernoulli transfer operator, with eigenvalue f(k). The multiplication theorem for the Bernoulli polynomials then follows as a special case of the multiplicative function {displaystyle f(n)=n^{-s}} . The Dirichlet characters are fully multiplicative, and thus can be readily used to obtain additional identities of this form. Characteristic zero The multiplication theorem over a field of characteristic zero does not close after a finite number of terms, but requires an infinite series to be expressed. Examples include that for the Bessel function {displaystyle J_{nu }(z)} : {displaystyle lambda ^{-nu }J_{nu }(lambda z)=sum _{n=0}^{infty }{frac {1}{n!}}left({frac {(1-lambda ^{2})z}{2}}right)^{n}J_{nu +n}(z),} where {displaystyle lambda } and {displaystyle nu } may be taken as arbitrary complex numbers. Such characteristic-zero identities follow generally from one of many possible identities on the hypergeometric series. Notes ^ Weisstein, Eric W. "Legendre Duplication Formula". MathWorld. ^ Apostol, Introduction to analytic number theory, Springer References Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (1972) Dover, New York. (Multiplication theorems are individually listed chapter by chapter) C. Truesdell, "On the Addition and Multiplication Theorems for the Special Functions", Proceedings of the National Academy of Sciences, Mathematics, (1950) pp. 752–757. Categories: Special functionsZeta and L-functionsGamma and related functionsMathematical theorems

Wenn Sie andere ähnliche Artikel wissen möchten Multiplication theorem Sie können die Kategorie besuchen Gamma and related functions.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen