Monotone convergence theorem

Monotone convergence theorem In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences (sequences that are non-decreasing or non-increasing) that are also bounded. Informellement, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

Contenu 1 Convergence of a monotone sequence of real numbers 1.1 Lemme 1 1.2 Preuve 1.3 Lemme 2 1.4 Preuve 1.5 Théorème 1.6 Preuve 2 Convergence of a monotone series 2.1 Théorème 3 Beppo Levi's lemma 3.1 Théorème 3.2 Preuve 3.2.1 Intermediate results 3.2.1.1 Lebesgue integral as measure 3.2.1.1.1 Preuve 3.2.1.2 "Continuity from below" 3.2.2 Preuve du théorème 4 Voir également 5 Notes Convergence of a monotone sequence of real numbers Lemma 1 If a sequence of real numbers is increasing and bounded above, then its supremum is the limit.

Proof Let {style d'affichage (un_{n})_{nin mathbb {N} }} be such a sequence, et laissez {style d'affichage {un_{n}}} be the set of terms of {style d'affichage (un_{n})_{nin mathbb {N} }} . Par hypothèse, {style d'affichage {un_{n}}} is non-empty and bounded above. By the least-upper-bound property of real numbers, {textstyle c=sup _{n}{un_{n}}} exists and is finite. À présent, pour chaque {displaystyle varepsilon >0} , il existe {displaystyle N} tel que {style d'affichage a_{N}>c-varepsilon } , since otherwise {displaystyle c-varepsilon } is an upper bound of {style d'affichage {un_{n}}} , which contradicts the definition of {displaystyle c} . Puis depuis {style d'affichage (un_{n})_{nin mathbb {N} }} is increasing, et {displaystyle c} is its upper bound, pour chaque {displaystyle n>N} , Nous avons {style d'affichage |c-a_{n}|leq |c-a_{N}|

Si vous voulez connaître d'autres articles similaires à Monotone convergence theorem vous pouvez visiter la catégorie Sequences and series.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations