# Monotone convergence theorem

Monotone convergence theorem In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences (sequences that are non-decreasing or non-increasing) that are also bounded. Informell, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

Inhalt 1 Convergence of a monotone sequence of real numbers 1.1 Lemma 1 1.2 Nachweisen 1.3 Lemma 2 1.4 Nachweisen 1.5 Satz 1.6 Nachweisen 2 Convergence of a monotone series 2.1 Satz 3 Beppo Levi's lemma 3.1 Satz 3.2 Nachweisen 3.2.1 Intermediate results 3.2.1.1 Lebesgue integral as measure 3.2.1.1.1 Nachweisen 3.2.1.2 "Continuity from below" 3.2.2 Beweis des Satzes 4 Siehe auch 5 Notes Convergence of a monotone sequence of real numbers Lemma 1 If a sequence of real numbers is increasing and bounded above, then its supremum is the limit.

Proof Let {Anzeigestil (a_{n})_{nin mathbb {N} }} be such a sequence, und lass {Anzeigestil {a_{n}}} be the set of terms of {Anzeigestil (a_{n})_{nin mathbb {N} }} . Nach Annahme, {Anzeigestil {a_{n}}} is non-empty and bounded above. By the least-upper-bound property of real numbers, {textstyle c=sup _{n}{a_{n}}} exists and is finite. Jetzt, für jeden {displaystyle varepsilon >0} , es existiert {Anzeigestil N} so dass {Anzeigestil a_{N}>c-varepsilon } , since otherwise {displaystyle c-varepsilon } is an upper bound of {Anzeigestil {a_{n}}} , which contradicts the definition of {Anzeigestil c} . Dann seit {Anzeigestil (a_{n})_{nin mathbb {N} }} is increasing, und {Anzeigestil c} is its upper bound, für jeden {displaystyle n>N} , wir haben {Anzeigestil |c-a_{n}|leq |c-a_{N}|

Wenn Sie andere ähnliche Artikel wissen möchten Monotone convergence theorem Sie können die Kategorie besuchen Sequences and series.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen