# Minkowski's second theorem Minkowski's second theorem In mathematics, Minkowski's second theorem is a result in the geometry of numbers about the values taken by a norm on a lattice and the volume of its fundamental cell.

Contents 1 Setting 2 Statement 3 Proof 4 References Setting Let K be a closed convex centrally symmetric body of positive finite volume in n-dimensional Euclidean space Rn. The gauge or distance Minkowski functional g attached to K is defined by {displaystyle g(x)=inf left{lambda in mathbb {R} :xin lambda Kright}.} Conversely, given a norm g on Rn we define K to be {displaystyle K=left{xin mathbb {R} ^{n}:g(x)leq 1right}.} Let Γ be a lattice in Rn. The successive minima of K or g on Γ are defined by setting the k-th successive minimum λk to be the infimum of the numbers λ such that λK contains k linearly-independent vectors of Γ. We have 0 < λ1 ≤ λ2 ≤ ... ≤ λn < ∞. Statement The successive minima satisfy {displaystyle {frac {2^{n}}{n!}}operatorname {vol} left(mathbb {R} ^{n}/Gamma right)leq lambda _{1}lambda _{2}cdots lambda _{n}operatorname {vol} (K)leq 2^{n}operatorname {vol} left(mathbb {R} ^{n}/Gamma right).} Proof A basis of linearly independent lattice vectors b1, b2, ..., bn can be defined by g(bj) = λj. The lower bound is proved by considering the convex polytope 2n with vertices at ±bj/ λj, which has an interior enclosed by K and a volume which is 2n/n!λ1 λ2...λn times an integer multiple of a primitive cell of the lattice (as seen by scaling the polytope by λj along each basis vector to obtain 2n n-simplices with lattice point vectors). To prove the upper bound, consider functions fj(x) sending points x in {textstyle K} to the centroid of the subset of points in {textstyle K} that can be written as {textstyle x+sum _{i=1}^{j-1}a_{i}b_{i}} for some real numbers {textstyle a_{i}} . Then the coordinate transform {displaystyle x'=h(x)=sum _{i=1}^{n}(lambda _{i}-lambda _{i-1})f_{i}(x)/2} has a Jacobian determinant {textstyle J=lambda _{1}lambda _{2}ldots lambda _{n}/2^{n}} . If {textstyle p} and {textstyle q} are in the interior of {textstyle K} and {textstyle p-q=sum _{i=1}^{k}a_{i}b_{i}} (with {textstyle a_{k}neq 0} ) then {displaystyle (h(p)-h(q))=sum _{i=0}^{k}c_{i}b_{i}in lambda _{k}K} with {textstyle c_{k}=lambda _{k}a_{k}/2} , where the inclusion in {textstyle lambda _{k}K} (specifically the interior of {textstyle lambda _{k}K} ) is due to convexity and symmetry. But lattice points in the interior of {textstyle lambda _{k}K} are, by definition of {textstyle lambda _{k}} , always expressible as a linear combination of {textstyle b_{1},b_{2},ldots b_{k-1}} , so any two distinct points of {textstyle K'=h(K)={x'mid h(x)=x'}} cannot be separated by a lattice vector. Therefore, {textstyle K'} must be enclosed in a primitive cell of the lattice (which has volume {textstyle operatorname {vol} (mathbb {R} ^{n}/Gamma )} ), and consequently {textstyle operatorname {vol} (K)/J=operatorname {vol} (K')leq operatorname {vol} (mathbb {R} ^{n}/Gamma )} . References ^ Siegel (1989) p.6 ^ Cassels (1957) p.154 ^ Cassels (1971) p.103 ^ Cassels (1957) p.156 ^ Cassels (1971) p.203 ^ Siegel (1989) p.57 Cassels, J. W. S. (1957). An introduction to Diophantine approximation. Cambridge Tracts in Mathematics and Mathematical Physics. Vol. 45. Cambridge University Press. Zbl 0077.04801. Cassels, J. W. S. (1997). An Introduction to the Geometry of Numbers. Classics in Mathematics (Reprint of 1971 ed.). Springer-Verlag. ISBN 978-3-540-61788-4. Nathanson, Melvyn B. (1996). Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Graduate Texts in Mathematics. Vol. 165. Springer-Verlag. pp. 180–185. ISBN 0-387-94655-1. Zbl 0859.11003. Schmidt, Wolfgang M. (1996). Diophantine approximations and Diophantine equations. Lecture Notes in Mathematics. Vol. 1467 (2nd ed.). Springer-Verlag. p. 6. ISBN 3-540-54058-X. Zbl 0754.11020. Siegel, Carl Ludwig (1989). Komaravolu S. Chandrasekharan (ed.). Lectures on the Geometry of Numbers. Springer-Verlag. ISBN 3-540-50629-2. Zbl 0691.10021. Categories: Geometry of numbersHermann Minkowski

Si quieres conocer otros artículos parecidos a Minkowski's second theorem puedes visitar la categoría Geometry of numbers.

Subir

Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información