Milman–Pettis theorem

Milman–Pettis theorem In mathematics, the Milman–Pettis theorem states that every uniformly convex Banach space is reflexive.

The theorem was proved independently by D. Milman (1938) e B. J. Pettis (1939). S. Kakutani gave a different proof in 1939, and John R. Ringrose published a shorter proof in 1959.

Mahlon M. Day (1941) gave examples of reflexive Banach spaces which are not isomorphic to any uniformly convex space.

Referências S. Kakutani, Weak topologies and regularity of Banach spaces, Proc. Imp. Acad. Tokyo 15 (1939), 169-173. D. Milman, On some criteria for the regularity of spaces of type (B), C. R. (Doklady) Acad. Sci. U.R.S.S, 20 (1938), 243–246. B. J. Pettis, A proof that every uniformly convex space is reflexive, Duque Matemática. J. 5 (1939), 249-253. J. R. Ringrose, A note on uniformly convex spaces, J. Matemática de Londres. Soc. 34 (1959), 92. Day, Mahlon M. (1941). "Reflexive Banach spaces not isomorphic to uniformly convex spaces". Touro. América. Matemática. Soc. Sociedade Americana de Matemática. 47: 313-317. doi:10.1090/S0002-9904-1941-07451-3. hide vte Functional analysis (tópicos – glossário) Spaces BanachBesovFréchetHilbertHölderNuclearOrliczSchwartzSobolevtopological vector Properties barrelledcompletedual (algébrico/topológico)locally convexreflexiveseparable Theorems Hahn–BanachRiesz representationclosed graphuniform boundedness principleKakutani fixed-pointKrein–Milmanmin–maxGelfand–NaimarkBanach–Alaoglu Operators adjointboundedcompactHilbert–Schmidtnormalnucleartrace classtransposeunboundedunitary Algebras Banach algebraC*-algebraspectrum of a C*-algebraoperator algebragroup algebra of a locally compact groupvon Neumann algebra Open problems invariant subspace problemMahler's conjecture Applications Hardy spacespectral theory of ordinary differential equationsheat kernelindex theoremcalculus of variationsfunctional calculusintegral operatorJones polynomialtopological quantum field theorynoncommutative geometryRiemann hypothesisdistribution (ou funções generalizadas) Advanced topics approximation propertybalanced setChoquet theoryweak topologyBanach–Mazur distanceTomita–Takesaki theory Categories: Banach spacesTheorems in functional analysis

Se você quiser conhecer outros artigos semelhantes a Milman–Pettis theorem você pode visitar a categoria Banach spaces.

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação