Satz von Meusnier

Meusnier's theorem In differential geometry, Meusnier's theorem states that all curves on a surface passing through a given point p and having the same tangent line at p also have the same normal curvature at p and their osculating circles form a sphere. The theorem was first announced by Jean Baptiste Meusnier in 1776, but not published until 1785.[1] At least prior to 1912, several writers in English were in the habit of calling the result Meunier's theorem, although there is no evidence that Meusnier himself ever spelt his name in this way.[2] This alternative spelling of Meusnier's name also appears on the Arc de Triomphe in Paris.
References ^ Jean Meusnier: Ich habe. prés. par div. Etrangers. Akad. Wissenschaft. Paris, 10 (1785) pp. 477–510 ^ R. C. Archibald, Query 76, Mathematische Zeitung, 6 (Kann, 1912), p. 297 Further references Meusnier's theorem Johannes Kepler University Linz, Institute for Applied Geometry Meusnier's theorem in Springer Online Porteous, Ian R. (2001). "Theorems of Euler and Meusnier". Geometric Differentiation. Cambridge University Press. pp. 253–5. ISBN 0-521-00264-8.
Dieser Artikel zum Thema Differentialgeometrie ist ein Stummel. Sie können Wikipedia helfen, indem Sie es erweitern.
Kategorien: Theorems in differential geometryDifferential geometry stubs
Wenn Sie andere ähnliche Artikel wissen möchten Satz von Meusnier Sie können die Kategorie besuchen Stubs der Differentialgeometrie.
Hinterlasse eine Antwort