Mertens' theorems

In number theory, Mertens' theorems are three 1874 results related to the density of prime numbers proved by Franz Mertens.[1] "Mertens' theorem" may also refer to his theorem in analysis.

Contenu 1 Théorèmes 1.1 Changes in sign 1.2 Mertens' second theorem and the prime number theorem 1.3 Mertens' third theorem and sieve theory 2 Preuve 3 Références 4 Lectures complémentaires 5 External links Theorems In the following, laisser {displaystyle pleq n} mean all primes not exceeding n.

Mertens' first theorem: {somme de style d'affichage _{pleq n}{frac {ln p}{p}}-dans n} does not exceed 2 in absolute value for any {style d'affichage ngeq 2} . (A083343) Mertens' second theorem: {style d'affichage lim _{pas trop }la gauche(somme _{pleq n}{frac {1}{p}}-ln ln n-Mright)=0,} where M is the Meissel–Mertens constant (A077761). Plus précisément, Mertens[1] proves that the expression under the limit does not in absolute value exceed {style d'affichage {frac {4}{dans(n+1)}}+{frac {2}{nl n}}} pour toute {style d'affichage ngeq 2} .

Mertens' third theorem: {style d'affichage lim _{pas trop }ln nprod _{pleq n}la gauche(1-{frac {1}{p}}droit)=e^{-gamma }environ 0.561459483566885,} where γ is the Euler–Mascheroni constant (A001620).

Changes in sign In a paper [2] on the growth rate of the sum-of-divisors function published in 1983, Guy Robin proved that in Mertens' 2nd theorem the difference {somme de style d'affichage _{pleq n}{frac {1}{p}}-ln ln n-M} changes sign infinitely often, and that in Mertens' 3rd theorem the difference {displaystyle ln nprod _{pleq n}la gauche(1-{frac {1}{p}}droit)-e ^{-gamma }} changes sign infinitely often. Robin's results are analogous to Littlewood's famous theorem that the difference π(X) − li(X) changes sign infinitely often. No analog of the Skewes number (an upper bound on the first natural number x for which π(X) > li(X)) is known in the case of Mertens' 2nd and 3rd theorems.

Mertens' second theorem and the prime number theorem Regarding this asymptotic formula Mertens refers in his paper to "two curious formula of Legendre",[1] the first one being Mertens' second theorem's prototype (and the second one being Mertens' third theorem's prototype: see the very first lines of the paper). He recalls that it is contained in Legendre's third edition of his "Théorie des nombres" (1830; it is in fact already mentioned in the second edition, 1808), and also that a more elaborate version was proved by Chebyshev in 1851.[3] Notez que, already in 1737, Euler knew the asymptotic behaviour of this sum.

Mertens diplomatically describes his proof as more precise and rigorous. In reality none of the previous proofs are acceptable by modern standards: Euler's computations involve the infinity (and the hyperbolic logarithm of infinity, and the logarithm of the logarithm of infinity!); Legendre's argument is heuristic; and Chebyshev's proof, although perfectly sound, makes use of the Legendre-Gauss conjecture, which was not proved until 1896 and became better known as the prime number theorem.

Mertens' proof does not appeal to any unproved hypothesis (dans 1874), and only to elementary real analysis. It comes 22 years before the first proof of the prime number theorem which, by contrast, relies on a careful analysis of the behavior of the Riemann zeta function as a function of a complex variable. Mertens' proof is in that respect remarkable. En effet, with modern notation it yields {somme de style d'affichage _{pleq x}{frac {1}{p}}=log log x+M+O(1/journal x)} whereas the prime number theorem (in its simplest form, without error estimate), can be shown to be equivalent to[4] {somme de style d'affichage _{pleq x}{frac {1}{p}}=log log x+M+o(1/journal x).} Dans 1909 Edmund Landau, by using the best version of the prime number theorem then at his disposition, proved[5] ce {somme de style d'affichage _{pleq x}{frac {1}{p}}=log log x+M+O(e ^{-(journal x)^{1/14}})} détient; in particular the error term is smaller than {style d'affichage 1/(journal x)^{k}} for any fixed integer k. A simple summation by parts exploiting the strongest form known of the prime number theorem improves this to {somme de style d'affichage _{pleq x}{frac {1}{p}}=log log x+M+O(e ^{-c(journal x)^{3/5}(log log x)^{-1/5}})} pour certains {displaystyle c>0} .

Similarly a partial summation shows that {somme de style d'affichage _{pleq x}{frac {journal p}{p}}=log x+C+o(1)} is equivalent to the PNT.

Mertens' third theorem and sieve theory An estimate of the probability of {style d'affichage X} ( {displaystyle Xgg n} ) having no factor {displaystyle leq n} est donné par {displaystyle prod _{pleq n}la gauche(1-{frac {1}{p}}droit)} This is closely related to Mertens' third theorem which gives an asymptotic approximation of {style d'affichage P(pnmid X forall pleq n)={frac {1}{e ^{gamma }dans n}}} Proof The main step in the proof of Mertens' second theorem is {style d'affichage O(n)+nlog n=log n!=somme _{p^{k}leq n}lfloor n/p^{k}rfloor log p=sum _{p^{k}leq n}la gauche({frac {n}{p^{k}}}+O(1)droit)log p=nsum _{p^{k}leq n}{frac {journal p}{p^{k}}} +O(n)} where the last equality needs {somme de style d'affichage _{p^{k}leq n}log p=O(n)} which follows from {somme de style d'affichage _{pin (n,2n]}log pleq log {2n choisir n}= O(n)} .

Ainsi, we have proved that {somme de style d'affichage _{pleq n}{frac {journal p}{p}}=log n+O(1)} .

A partial summation yields {somme de style d'affichage _{pleq n}{frac {1}{p}}=log log n+M+O(1/journal n)} . Références ^ Aller à: a b c F. Mertens. J. reine angew. Math. 78 (1874), 46–62 Ein Beitrag zur analytischen Zahlentheorie ^ Robin, g. (1983). "Sur l'ordre maximum de la fonction somme des diviseurs". Séminaire Delange–Pisot–Poitou, Théorie des nombres (1981–1982). Progress in Mathematics. 38: 233–244. ^ P.L. Tchebychev. Sur la fonction qui détermine la totalité des nombres premiers. Mémoires présentés à l'Académie Impériale des Sciences de St-Pétersbourg par divers savants, VI 1851, 141–157 ^ Although this equivalence is not explicitly mentioned there, it can for instance be easily derived from the material in chapter I.3 of: g. Tenenbaum. Introduction to analytic and probabilistic number theory. Translated from the second French edition (1995) by C. B. Thomas. Études de Cambridge en mathématiques avancées, 46. la presse de l'Universite de Cambridge, Cambridge,1995. ^ Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig 1909, Repr. Chelsea New York 1953, § 55, p. 197-203. Further reading Yaglom and Yaglom Challenging mathematical problems with elementary solutions Vol 2, problems 171, 173, 174 Weissstein externe gauche, Eric W. "Mertens Constant". MathWorld. Sondow, Jonathan & Weisstein, Eric W. "Mertens Theorem". MathWorld. Weisstein, Eric W. "Mertens' Second Theorem". MathWorld. Varun Rajkumar, Pi(X) and the Sieve of Eratosthenes Categories: Mathematical seriesSummability theoryTheorems about prime numbers

Si vous voulez connaître d'autres articles similaires à Mertens' theorems vous pouvez visiter la catégorie Mathematical series.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations