Maier's theorem

Maier's theorem In number theory, Maier's theorem (Maier 1985) is a theorem about the numbers of primes in short intervals for which Cramér's probabilistic model of primes gives a wrong answer.

The theorem states that if π is the prime-counting function and λ is greater than 1 then {displaystyle {frac {pi (x+(log x)^{lambda })-pi (x)}{(log x)^{lambda -1}}}} does not have a limit as x tends to infinity; more precisely the limit superior is greater than 1, and the limit inferior is less than 1. The Cramér model of primes predicts incorrectly that it has limit 1 when λ≥2 (using the Borel–Cantelli lemma).

Proofs Maier proved his theorem using Buchstab's equivalent for the counting function of quasi-primes (set of numbers without prime factors lower to bound {displaystyle z=x^{1/u}} , {displaystyle u} fixed). He also used an equivalent of the number of primes in arithmetic progressions of sufficient length due to Gallagher.

Pintz (2007) gave another proof, and also showed that most probabilistic models of primes incorrectly predict the mean square error {displaystyle int _{2}^{Y}left(sum _{2

Si quieres conocer otros artículos parecidos a Maier's theorem puedes visitar la categoría Probabilistic models.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información