# M. Riesz extension theorem M. Riesz extension theorem For more theorems that are sometimes called Riesz's theorem, see Riesz theorem.

The M. Riesz extension theorem is a theorem in mathematics, proved by Marcel Riesz during his study of the problem of moments. Conteúdo 1 Formulação 2 Prova 3 Corolário: Krein's extension theorem 4 Connection to the Hahn–Banach theorem 5 Notas 6 References Formulation Let {estilo de exibição E} be a real vector space, {displaystyle Fsubset E} be a vector subspace, e {displaystyle Ksubset E} be a convex cone.

A linear functional {estilo de exibição phi :Fto mathbb {R} } is called {estilo de exibição K} -positivo, if it takes only non-negative values on the cone {estilo de exibição K} : {estilo de exibição phi (x)geq 0quad {texto{por}}quad xin Fcap K.} A linear functional {estilo de exibição psi :Eto mathbb {R} } is called a {estilo de exibição K} -positive extension of {estilo de exibição phi } , if it is identical to {estilo de exibição phi } in the domain of {estilo de exibição phi } , and also returns a value of at least 0 for all points in the cone {estilo de exibição K} : {estilo de exibição psi |_{F}=phi quad {texto{e}}quad psi (x)geq 0quad {texto{por}}quad xin K.} No geral, uma {estilo de exibição K} -positive linear functional on {estilo de exibição F} cannot be extended to a {estilo de exibição K} -positive linear functional on {estilo de exibição E} . Already in two dimensions one obtains a counterexample. Deixar {displaystyle E=mathbb {R} ^{2}, K={(x,y):y>0}copo {(x,0):x>0},} e {estilo de exibição F} be the {estilo de exibição x} -eixo. The positive functional {estilo de exibição phi (x,0)=x} can not be extended to a positive functional on {estilo de exibição E} .

No entanto, the extension exists under the additional assumption that {displaystyle Esubset K+F,} namely for every {displaystyle yin E,} there exists an {displaystyle xin F} de tal modo que {displaystyle y-xin K.} Proof The proof is similar to the proof of the Hahn–Banach theorem (see also below).

By transfinite induction or Zorn's lemma it is sufficient to consider the case dim {displaystyle E/F=1} .

Choose any {displaystyle yin Esetminus F} . Definir {displaystyle a=sup{,phi (x)mid xin F, y-xin K,}, b=inf{,phi (x)mid xin F,x-yin K,}.} We will prove below that {estilo de exibição -infty 0} e {displaystyle xin F} . Se {displaystyle z=0} , então {estilo de exibição psi (z)>0} . In the first remaining case {displaystyle x+y=y-(-x)in K} , e entao {estilo de exibição psi (y)=cgeq ageq phi (-x)=psi (-x)} por definição. Desta forma {estilo de exibição psi (z)=ppsi (x+y)=p(psi (x)+psi (y))geq 0.} In the second case, {displaystyle x-yin K} , and so similarly {estilo de exibição psi (y)=cleq bleq phi (x)=psi (x)} by definition and so {estilo de exibição psi (z)=ppsi (x-y)=p(psi (x)-psi (y))geq 0.} Em todos os casos, {estilo de exibição psi (z)>0} , e entao {estilo de exibição psi } é {estilo de exibição K} -positivo.

We now prove that {estilo de exibição -infty 0.

Connection to the Hahn–Banach theorem Main article: Hahn–Banach theorem The Hahn–Banach theorem can be deduced from the M. Riesz extension theorem.

Let V be a linear space, and let N be a sublinear function on V. Let φ be a functional on a subspace U ⊂ V that is dominated by N: {estilo de exibição phi (x)leq N(x),quad xin U.} The Hahn–Banach theorem asserts that φ can be extended to a linear functional on V that is dominated by N.

To derive this from the M. Riesz extension theorem, define a convex cone K ⊂ R×V by {displaystyle K=left{(uma,x),meio ,N(x)leq aright}.} Define a functional φ1 on R×U by {estilo de exibição phi _{1}(uma,x)=a-phi (x).} One can see that φ1 is K-positive, and that K + (R × U) = R × V. Therefore φ1 can be extended to a K-positive functional ψ1 on R×V. Então {estilo de exibição psi (x)=-psi _{1}(0,x)} is the desired extension of φ. De fato, if ψ(x) > N(x), temos: (N(x), x) ∈ K, whereas {estilo de exibição psi _{1}(N(x),x)=N(x)-psi (x)<0,} leading to a contradiction. Notes ^ Riesz (1923) ^ Akhiezer (1965) References Castillo, Reńe E. (2005), "A note on Krein's theorem" (PDF), Lecturas Matematicas, 26, archived from the original (PDF) on 2014-02-01, retrieved 2014-01-18 Riesz, M. (1923), "Sur le problème des moments. III.", Arkiv för Matematik, Astronomi och Fysik (in French), 17 (16), JFM 49.0195.01 Akhiezer, N.I. (1965), The classical moment problem and some related questions in analysis, New York: Hafner Publishing Co., MR 0184042 hide vte Functional analysis (topics – glossary) Spaces BanachBesovFréchetHilbertHölderNuclearOrliczSchwartzSobolevtopological vector Properties barrelledcompletedual (algebraic/topological)locally convexreflexiveseparable Theorems Hahn–BanachRiesz representationclosed graphuniform boundedness principleKakutani fixed-pointKrein–Milmanmin–maxGelfand–NaimarkBanach–Alaoglu Operators adjointboundedcompactHilbert–Schmidtnormalnucleartrace classtransposeunboundedunitary Algebras Banach algebraC*-algebraspectrum of a C*-algebraoperator algebragroup algebra of a locally compact groupvon Neumann algebra Open problems invariant subspace problemMahler's conjecture Applications Hardy spacespectral theory of ordinary differential equationsheat kernelindex theoremcalculus of variationsfunctional calculusintegral operatorJones polynomialtopological quantum field theorynoncommutative geometryRiemann hypothesisdistribution (or generalized functions) Advanced topics approximation propertybalanced setChoquet theoryweak topologyBanach–Mazur distanceTomita–Takesaki theory Categories: Theorems in convex geometryTheorems in functional analysis

Se você quiser conhecer outros artigos semelhantes a M. Riesz extension theorem você pode visitar a categoria Theorems in convex geometry.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação